Fabrication of Flexible Au/ZnO/ITO/PET Memristor Using Dilute Electrodeposition Method

Fauzi, F.B. Ani, M.H., Othman, R., Azhar, A.Z.A., Mohamed, M.A., Herman, S.H.

Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia

Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia

NANO-Electronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, Selangor, Shah Alam, Malaysia

Abstract

DRAM has been approaching its maximum physical limit due to the demand of smaller size and higher capacity memory resistor. The researchers have discovered the abilities of a memristor, a Non Volatile Memory (NVM) that could overcome the size and capacity obstacles. This paper discussed about the deposition of zinc oxide (ZnO) on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrate by electrodeposition. Metallic Zn film was deposited on substrates with varying deposition time from 15 to 120 seconds in very dilute zinc chloride (ZnCl₂) aqueous and subsequently oxidized at 150 °C to form ZnO/ITO coated PET junction. The deposited thin film was characterized via x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The results from I-V measurement show the deposited ZnO exhibits pinched hysteresis loop. The hysteresis loop becomes smaller with increasing deposition time. The 15 seconds electrodeposition gave the largest hysteresis loop and largest value of resistive switching ratio of 1.067. The result of the synthesized ZnO on the flexible substrate can be one of the alternatives to replace the current memory system as the flexible memory system. © Published under licence by IOP Publishing Ltd.

Reaxys Database Information

Indexed keywords

<table>
<thead>
<tr>
<th>Engineering controlled terms:</th>
<th>Data storage equipment</th>
<th>Deposition</th>
<th>Digital storage</th>
<th>Dynamic random access storage</th>
<th>Electrodeposition</th>
<th>Electrodes</th>
<th>Electronic equipment</th>
<th>Field emission microscopes</th>
<th>Hysteresis</th>
<th>Hysteresis loops</th>
<th>Memristors</th>
<th>Passive filters</th>
<th>Plastic bottles</th>
<th>Scanning electron microscopy</th>
<th>Thermoelectric equipment</th>
<th>Tin oxides</th>
<th>X ray diffraction</th>
<th>Zinc</th>
<th>Zinc chloride</th>
<th>Zinc oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compendex keywords</td>
<td>Electrodeposition methods</td>
<td>Field emission scanning electron microscopy</td>
<td>Flexible substrate</td>
<td>I-V measurements</td>
<td>Indium tin oxide</td>
<td>Non-volatile memory</td>
<td>Polyethylene terephthalates (PET)</td>
<td>Resistive switching</td>
<td></td>
</tr>
</tbody>
</table>

Engineering main heading: Substrates
References (15)

1. Reuss, R.H., Chalamala, B.R., Moussessian, A., Kane, M.G., Kumar, A., Zhang, D.C., Rogers, J.A., (...), Snow, E.

 Macroelectronics: Perspectives on technology and applications

 doi: 10.1109/JPROC.2005.851237

 View at Publisher

2. MacDonald, W.A., Looney, M.K., Mackerron, D., Eveson, R., Adam, R., Hashimoto, K., Rakos, K.

 Latest advances in substrates for flexible electronics

 http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JSIDE800001500001200107300001andidtype=cvips
 doi: 10.1889/1.2825093

 View at Publisher

 A flexible solution-processed memristor

 doi: 10.1109/LED.2009.2021418

 View at Publisher

5. Chua, L.O.

 Memristor—The Missing Circuit Element

 doi: 10.1109/TCT.1971.1083337

 View at Publisher

6. Williams, R.S.

 How we found the missing Memristor

 doi: 10.1109/MSPEC.2008.4687366

 View at Publisher
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Details</th>
<th>Citations</th>
<th>Publisher Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Lincot, D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.</td>
<td>The missing memristor found</td>
<td>(2008) Nature, 453 (7191), pp. 80-83.</td>
<td>Cited 3828 times</td>
<td>View at Publisher</td>
</tr>
</tbody>
</table>