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Abstract: Mathematics education of yesterday, where the emphasis of procedural rote 
learning took centre stage, is no longer viable. Today, students must understand the 
Mathematics that they are learning; that is, Mathematics involves various components or 
strands that are interdependent and interwoven. The purpose of this study was to assess 
three of the strands, namely, conceptual understanding, procedural fluency, and strategic 
competence among 14-year-old students. This study also sought empirical evidence 
for how the Mathematics proficiency construct contributed to each strand. Results 
from Rasch Model calibration showed that students were most proficient in conceptual 
understanding followed by strategic competence and procedural fluency. Confirmatory 
factor analysis confirmed that Mathematics proficiency was a significant determinant for 
each strand. Lastly, this study reported several implications calling for future research.

Keywords: conceptual understanding, procedural fluency, strategic competence, Rasch 
model, confirmatory factor analysis

Abstrak: Pendidikan matematik yang menekankan hafalan prosedur-prosedur tidak lagi 
relevan pada masa ini. Pelajar sebaliknya perlu memahami bahawa matematik terdiri 
daripada beberapa komponen yang saling berkaitan dan saling bergantungan antara satu 
sama lain. Tujuan kajian ini adalah untuk menilai tiga daripada komponen ini, iaitu, 
pemahaman konsep, kelancaran prosedur, dan kecekapan penyelesaian masalah dalam 
kalangan pelajar-pelajar berusia 14 tahun. Kajian ini juga cuba mendapatkan bukti 
empirik tentang hubungan di antara konstruk profisiensi matematik dengan ketiga-tiga 
komponen ini. Dapatan kajian yang menggunakan tentukuran Rasch menunjukkan pelajar 
lebih profisien dalam pemahaman konsep diikuti dengan kecekapan penyelesaian masalah 
dan kelancaran prosedur. Analisis faktor pengesahan mengesahkan bahawa profisiensi 
Matematik merupakan penentu yang signifikan bagi ketiga-tiga komponen. Beberapa 
implikasi kajian yang memerlukan kajian lanjut turut dilaporkan.
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Kata kunci: pemahaman konsep, kelancaran prosedur, kecekapan strategik, model 
Rasch, analisis faktor pengesahan

INTRODUCTION

Mathematics is important since every human being must be able to perform some 
basic mathematics in order to participate effectively within his or her society. 
Knowledge in mathematics enhances the capabilities of human mind, which in 
turn, facilitates the development of science and technology. Capacity for logical 
thought, explanation, and justification enables mathematics to function as a 
model of deductive reasoning, which is essential in bringing order to human 
affairs. The importance of both practical and theoretical aspects has earned the 
subject of Mathematics a pivotal place in teaching and learning.

Today, students must face new challenges in which mathematics is no longer 
limited to a few selected and isolated areas.  The National Council of Teachers of 
Mathematics (1991) clearly emphasise the need for students to spend more time 
on reasoning and problem solving, communicating ideas, exploring relationships 
among representations of mathematical forms, and making connections 
between concepts. For example, while proficiency with numbers is important 
in mathematics, this proficiency can also be found throughout a mathematics 
curriculum. The domain of numbers both supports and is supported by other 
branches of mathematics, such as shape and space and relations (Ministry of 
Education, 2002).

In order to cope with the challenges, students must develop proficiencies 
essential to learning Mathematics, that is, aspects of expertise, competence 
knowledge, and facility. Since it is not possible to capture all components 
of Mathematics proficiency, researchers turn their attention to modelling the 
aspects to describe the complex process as well as to develop a wide range of 
ideas regarding the measurement of the construct (Bratina, 2004). One of the 
most highly cited mathematics proficiency models was proposed by Kilpatrick, 
Swafford and Findell (2001). The multidimensional model consists of five 
interwoven and interdependent strands: conceptual understanding, procedural 
fluency, strategic competence, adaptive reasoning, and productive disposition. 
The first three strands feature rudimentary mathematics abilities, whereas the 
latter two represent specifications for mathematics reasoning (ability to think 
logically) and mathematics communication (how students present their answer 
to solve problems). The strands are seen as "reflecting a firm, sizable body of 
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scholarly literature both inside [such as Mathematics educators] and outside                             
[for example, cognitive scientists] mathematics education" (Kilpatrick et al., 
2001, p. 118, emphasis added).

Conceptual understanding features strands regarding comprehension of 
mathematics concepts, operations, and relations, while procedural fluency 
represents the skills to carry out procedures appropriately, efficiently, and 
accurately (Kilpatrick et al., 2001). Strategic competence, on the other hand, 
is similar to problem-solving. Capacity to think, reflect, explain, and justify is 
captured under adaptive reasoning while productive disposition involves the 
tendency to make sense in mathematics. This disposition helps students be more 
confident in their knowledge and ability (Kilpatrick et al., 2001; Resnick, 1987).  
It is important to acknowledge that the strands are interwoven and interdependent.  
For example, in the process of acquiring conceptual understanding, a certain level 
of procedural fluency is required to develop and strengthen that understanding. 
When solving non-routine problems (strategic competence), students' attitudes 
and beliefs as learners become more positive (productive disposition). In short, 
students with proficiency in mathematics "understand basic concept, are fluent 
in performing basic operations, exercise a repertoire of strategic knowledge, 
reason clearly and flexibly, and maintain a positive out-look toward mathematics" 
(Kilpatrick et al., 2001, p. 409).

The present study, however, intends to discuss only the first three strands as 
based on the following justifications. Firstly, it is important to recognise that size 
and capacity of the strands should not be confounded because the model provides 
a description of holistic mathematics proficiency strands. Some strands, however, 
may be more important at a certain age level as compared to the other strands.  
For example, while conceptual understanding and procedural fluency have fully 
developed for 14-year-old students, their adaptive reasoning may be quite limited 
(Inhelder & Piaget, 1958; Sternberg & Rifkin, 1979, as cited in Kilpatrick et al., 
2001). Secondly, construction of test items to measure conceptual understanding, 
procedural fluency, and strategic competence are relatively easy using a 
standardised achievement test. However, a more thorough form of a test, such as 
performance assessment, is needed to scale productive disposition and adaptive 
reasoning.

The purpose of this study was twofold. First, the study aimed to investigate the 
adequacy of a purposely-developed proficiency test that served as a foundation 
to assess conceptual understanding, procedural fluency, and strategic competence 
among 14-year-old students. Evidence of the validity of the test was the 
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essence of this study. Secondly, this study also aimed to develop a mathematics 
proficiency model and sought empirical evidence for how the mathematics 
proficiency construct contributed to each strand. 

METHOD

Samples

The sample for this study consisted of 588 14-year-old students from the district 
of Lower Perak. Demographic features of the sample included the following:    
(a) 234 males (39.8%) and 354 females (60.2%), and (b) 384 Malays (65.3%), 59 
Chinese (10.0%), and 145 Indians (24.7%). The sample represented three equally 
distributed levels of mathematics ability: high, moderate and low, as based on 
information from their respective schools. The sample size was considered 
adequate for performing a Rasch model analysis (Hambleton & Cook, 1983; 
Tang, Way, & Carey, 1993), as well as for measurement modelling (Chou & 
Bentler, 1995; Hoyle & Kenny, 1999). This study adopted a purposive sampling 
procedure because the researcher had personal knowledge about the sample 
schools, especially in terms of their mathematics achievement (Gay, Mills, & 
Airasian, 2006).

Instrument

The instrument used in this study was a self-developed, 50-item Mathematics 
Proficiency Test (MPT) with the following proportion of strands: Conceptual 
Understanding (50%), Procedural Fluency (32%), and Strategic Competence 
(18%). In the development of the MPT, three fundamental test parameters 
were identified: test content, learning outcomes and item difficulty. The first 
two parameters were outlined in the Curriculum Specifications (Ministry of 
Education, 2002), whereas the difficulty for every item was conceptually 
determined by the researcher. Test content included the strands, topics and 
subtopics. Learning outcomes identified knowledge, skills and abilities that 
students needed to demonstrate at the end of every topic or subtopic. Items were 
then developed to operationalise these learning outcomes in terms of item scores.  
Three levels of difficulty (easy, moderate and difficult) were applied to target the 
learning outcomes.

The process of the MPT content validation involved a discussion with three 
experienced teachers regarding the table of specifications and item difficulty. The 
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weight of the topics in the table of specifications was given prime attention at the 
initial stage of the discussion. Several criteria were employed during the process. 
The criteria included: (1) the coverage given in the Curriculum Specifications, (2) 
the suitability of the topics for multiple-choice format, and (3) the rating of the 
topics by the panel. Topics with the weight of 3 were considered to be important 
topics for Form 2 since they were given the widest coverage in the Curriculum 
Specifications. The panel believed that these were important topics because 
they involved a lot of concepts to be understood, procedures to be mastered, 
and problems to be solved. The topics included Linear Equation, Algebraic 
Expressions II, Ratios, Rates and Proportions I, and Coordinates and Circles I. In 
addition, these topics were generally popular in the high-stake, national-level of 
Penilaian Menengah Rendah. Directed Numbers was considered to be the most 
important topic in the number sense strand. 

However, the panel decided that the topic should be given the weight of 2 
instead of 3 for a couple of reasons. First, some of the learning outcomes were 
addressed in Form 1. In Form 2, it was the expansion of the same knowledge, 
skills, and ability toward integers, fractions and decimals. Second, the same 
skills (multiplication and division) were addressed across the topics for integers, 
fractions and decimals. In short, regarding Directed Numbers, no new concept 
was introduced in Form 2. Similarly, although the topic of Transformation 1 
covered a wide range of concepts, the panel agreed that it involved much easier 
concepts. Moreover, some of the content was repeated in Form 3. Squares, 
Square Roots, Cubes and Cube Roots were given the weight of only 1, although 
they were widely covered in the specifications. Those topics were considered 
to be more suitable in a constructed-response format instead of a multiple-
choice format. Likewise, topics of Pythagoras' Theorem, Construction, Loci in 
Two Dimensions, Solid Geometry II and Statistics II were also more suited to 
be tested in a constructed-response format. Furthermore, these topics were only 
cited briefly in the Curriculum Specifications.

The next stage was to develop test items according to the table of specifications.  
At the same time, the difficulty level of each item was also conceptualised by 
the researcher. In this study, items for the MPT were developed through various 
procedures. Most of the items, especially in the conceptual understanding 
and procedural fluency, were adopted from the pool of items available. Also, 
a number of questions, especially in the strategic competence strand, were 
developed specifically for this study. After the items had been developed, they 
were again given to the same panel of experienced teachers for validation. 
One major concern was that the panellists tended to have opposing opinions 
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as to the difficulty of some of the items. An easy item for a teacher might be 
considered as moderate or even hard for another. Similarly, a moderate item 
might be considered difficult to others. Thus, the panellists failed to reach an 
agreement regarding the distribution of item difficulty on the MPT. This situation 
was expected since conceptualisation of item difficulty had been identified as a 
potential problem from the item development stage. Hence, empirical data from 
the pilot was used to provide more meaningful information on item difficulty.

Data Analyses

The Rasch model analysis enabled the present study to determine the validity 
of the MPT in measuring mathematics proficiency. Rasch model analysis is a 
method of obtaining objective, fundamental and linear measures from stochastic 
observation of an ordered category (Linacre, 2005). In this study, the WINSTEPS 
version 3.57 Rasch Model software (Linacre, 2005) was used. In WINSTEPS, the 
test scores (called measures and reported in logits) were determined through an 
iterative calibration of both the person and item using Joint Maximum Likelihood 
Estimation (JMLE). The measures from the Rasch Model calibration had 
properties that met the requirements of fundamental measurement (Hambleton 
& Swaminathan, 1985; Wright & Masters, 1982). These properties include: (1) 
the measures are invariant of items and persons used in the calibration process, 
and (2) the inclusion of quality-control fit statistics for both item and person for 
precision of estimation.  Most relevant to this study, however, is the fact that 
through verification of empirical data and theory, the Rasch Model allowed the 
test results to be directly referenced to the measured construct, thus facilitating 
interpretation of students’ achievement (Masters, Adams, & Lokan, 1994).

In this study, the adequacy of the MPT in measuring the mathematics proficiency 
construct was examined in two aspects: (1) validity of test items and (2) 
construct validity of mathematics proficiency. Evidence of validity of the test 
items was demonstrated through three criteria: item polarity, fit statistics, and 
dimensionality (Wright & Stone, 1979). Item polarity gives an indication 
of whether the items are working together in the same direction to define a 
construct. Fit statistics, the infit mean-square (MNSQ) and outfit MNSQ, help 
detect discrepancies between the data and Rasch Model expectation. Only when 
a test fits the model expectation can be considered as having the property of 
fundamental measurement. Meanwhile, investigation of dimensionality using 
Principal Component Analysis (PCA) was carried out to ensure that the MPT was 
measuring only a single construct, the Mathematics proficiency construct.
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One essential aspect of construct validity is related to the score's meaning and 
interpretation. Messick (1993) points out two major threats to construct validity, 
namely, construct-irrelevant variance and construct under-representation.  
Construct-irrelevant variance relates to the irrelevant sub-dimensions that 
contaminate measurement of the focal construct by producing reliable variance 
in the test scores. Construct under-representation identifies whether there were 
significant gaps between item distributions. Baghaei (2008) argues that within the 
framework of Rasch Model analyses, items that do not fit the model's expectation 
are instances of construct-irrelevant variance, whereas significant gaps between 
items along the continuum of measured scale are indications of construct under-
representation.

Confirmatory factor analysis (CFA), AMOS version 7.0, was used in this study 
to verify that mathematics proficiency is a significant determinant for the three 
strands. The data-fitting software adopted maximum likelihood procedure 
for parameter estimation in the measurement model, where the proficiency 
strands are linked to their underlying factor. Thus the primary interest of CFA 
is observation of strengths of the regression path (factor loadings) between 
the underlying factor and the strands. The unit of analysis for the three strands 
hypothesised was the logit measures from the Rasch Model calibration of the 
MPT. Figure 1 shows the hypothesised model where Mathematics proficiency 
(MATHPROF) was the underlying factor manifested by the three indicators: 
conceptual understanding (CONCEPT), procedural fluency (PROCEDUR), 
and strategic competence (STRATEGI). Error terms that usually related to 
measurement error are labelled e1, e2 and e3.

 

MATHPROF 

CONCEPT PROCEDUR STRATEGI 

e3 e2 e1 

Figure 1. The hypothesised mathematics proficiency model
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RESULTS AND DISCUSSION

Summary of item difficulty and student ability measures provided initial 
information as to the adequacy of the MPT. In Figure 2, both the items and the 
students were located along the proficiency scale. The items on the top were more 
difficult, and the students at the top displayed higher ability.  As we went down 
the line, the items became easier, and the students displayed less ability. Item 
difficulty measures spread approximately 4 logits (from 1.65 to +2.18), while 
student ability measures spanned approximately 8 logits (from 3.09 to +5.09).  
The mean for item difficulty was 0.00 (standard error = .89), while the mean for 
student ability was .10 (standard error = 1.22).

The small difference in mean measures of the students and the items indicated 
that the MPT targeted the student well. Reliability of item difficulty measures 
was very high (.99), suggesting that the ordering of item difficulty was highly 
replicable with another comparable sample of students. Internal consistency of 
the student ability measure was also high at .90, indicating that it was highly 
likely that the ordering of student ability could be replicated because most 
of the variance in the measured scores was attributed to true variance of the 
mathematics proficiency construct.

As depicted in Table 1, the point measure correlation (PTMEA CORR.) ranged 
from .25 to .60, with no item containing zero or negative values. This correlation 
indicated that all items were working together in the same way in defining the 
mathematics proficiency construct. The means of the infit and outfit MNSQ 
of 1.00 and 1.01, respectively, were close to the value expected by the model 
(1.00). This suggests that the amount of distortion of the measurement was 
minimal. Although the standard deviation of both the infit and outfit MNSQ 
(.10 and .16, respectively) were slightly higher than the expected value, these 
discrepancies were small and showed that the data demonstrated little variation 
from the Rasch Model expectation. Individual items demonstrated infit MNSQ 
values from 0.81 to 1.09, while outfit MNSQ were between 0.76–1.3, which were 
within the acceptable range of 0.7–1.3 (Bond & Fox, 2001). Results of the PCA 
of the residuals indicated that the largest factor extracted from the residuals was 
2.1 units, which has the strength of about 2 items and is well below the 5 items 
needed for consideration as a second factor (Linacre, 2005). In addition, no gaps 
of .5 logits or more (Linacre, 2004) between item distributions on the proficiency 
scale showed that the items were adequate in accessing important features of the 
Mathematics proficiency construct. Thus, it can be concluded that the MPT was 
adequate in measuring the Mathematics proficiency construct.
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Empirical scaling indicated that items for conceptual understanding were the 
easiest (mean = –0.16 logits) among the three strands, followed by strategic 
competence (mean = –0.0045 logits). In contrast, procedural fluency (mean = 
0.24 logits) was the most difficult strand. The scaling of the proficiency strands 
was within the researcher’s expectation, although it is contradictory to popular 
belief that solving strategic competence (problem solving) was the most difficult 
task. This can be attributed to the fact that strategic competence involves mostly 
word-problem items as opposed to the NAEP-like items usually associated with 
research in problem-solving ability of students.

One important observation from the inspection of the individual item was that 
the Form 2 students involved in this study were able to answer items related 
to understanding information that was explicitly stated (e.g., the terminology 
found in the diagram [item 29], or from the list of answers option [item 47]).  
This understanding was expected since the items only required a lower level of 
conceptual understanding in which students only need to locate the information 
that is explicitly stated. Similarly, the students were able to answer items that 
require use of some straightforward procedures (e.g., items 17 and 26). However, 
students had difficulty with items that required them to use their prior knowledge 
to solve new problems, particularly, making connections between topics. That 
trend is troublesome because making connections between various forms of 
mathematical knowledge, especially between concept and procedure and between 
mathematics and real-life experience, is important to effective mathematics 
learning and teaching (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002).

Another important finding was that all strands showed substantial dispersion, 
with both conceptual understanding and strategic competence having a similar 
spread (standard deviations SD of 0.97 and 0.98 respectively), while procedural 
fluency had a smaller spread (SD = 0.73). While the large dispersion for 
conceptual understanding was within expectation due to the number of items 
involved (n = 23), a relatively small spread in procedural fluency (n = 16), as 
compared to strategic competence (n = 9), was quite unexpected. Similarly, 
empirical scaling demonstrated that students were most proficient in conceptual 
understanding (mean = 0.16 logits) followed by strategic competence                                                 
(mean = –0.48 logits). These students were least proficient in procedural 
fluency (mean = –1.31 logits). In terms of dispersion, student measures spread 
substantially in both strategic competence (SD = 1.46 logits) and conceptual 
understanding (SD = 1.26 logits), but they demonstrated less dispersion in 
procedural fluency (SD = 0.69 logits).
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Figure 2. Wright map
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Table 1. The MPT: Item statistics
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The result of the confirmatory factor analysis was found to be of statistical 
significance and of practical importance since the standardised structural 
coefficient was larger than 0.1. This implied the following: (1) mathematics 
proficiency was a significant determinant for all three strands, and it contributed 
almost evenly toward conceptual understanding (90%), procedural fluency 
(81%), and strategic competence (82%); (2) a large amount of variability 
(81%) in conceptual understanding was accounted by Mathematics proficiency, 
as compared to 66% and 68% in procedural fluency and strategic competence, 
respectively; and (3) each strand and its error term had a nonzero loading on 
mathematics proficiency, meaning that it was not inter-correlated. The result of 
the confirmatory factor analysis provided more evidence of adequacy of the MPT 
in measuring strands of mathematics proficiency, where each item was adequate 
in measuring one strand at a time. Since the model was just-identified (i.e., the 
number of data variances and covariances equals the number of parameters to 
be estimated), it is unnecessary to assess the value of fit indices (TLI, CFI, GFI, 
RMSEA, etc.) because the data will fit the model perfectly. In other words, it 
is known that the observed measures meet the minimal requirement of the 
parameters that are estimated. Thus, it can be concluded that the parameters are 
estimable, whereas the model is testable eventhough it yields a unique solution 
for all parameters (Byrne, 2001). Results from the Pearson correlations further 
support the findings. All indicators were positively correlated (correlation 
coefficients between .705 and .751). In short, the study confirms that the three 
strands of mathematics proficiency, as proposed by Kilpatrick et al. (2001), were 
accepted by the data.

 

MATHPROF 

CONCEPT 

e1 

PROCEDUR STRATEGI 

e2 e3 

.81 .66 .68 

.90 .81 .82 

Figure 3. Standardised coefficients of the hypothesised Mathematics Proficiency Model
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Table 2. Inter-correlations among constructs

Conceptual 
understanding

Procedural 
fluency

Strategic 
competence

Conceptual understanding 1.000

Procedural fluency .751** 1.000

Strategic competence .727** .705** 1.000

Note: ** p < .01, (N = 588)

CONCLUSION

Using the framework of the Rasch Model, it is evident that the MPT was 
adequate in measuring the mathematics proficiency construct regarding the 
following findings: (a) the individual item provided enough contribution to the 
overall measurement of Mathematics proficiency construct, (b) the MPT fit the 
requirement of the Rasch measurement model and demonstrated substantial 
evidence of construct validity, and as such, the calibrated items were useful in 
measuring students' proficiency in mathematics, (c) the mathematics proficiency 
construct measured using the test did not confound with other related constructs, 
and (d) threats to construct validity, such as construct-irrelevance variances and 
construct under-representation, were kept to a minimum. In addition, the study 
found that all indicators in the hypothesised model had strong agreement with the 
model proposed by Kilpatrick et al. (2001).

As documented throughout the findings, the MPT was developed, validated and 
scrutinised for empirical evidence of adequacy in measuring the mathematics 
proficiency construct. Practically, the procedure may be replicated so that 
commendable results can be obtained from a particular test that would tend to 
measure any construct. Theoretically, having the capacity to resolve some of the 
rudimentary issues in measurement, this study has added more evidence in favour 
of the Rasch model. The present study also extends some theoretical implications 
regarding the investigation of the mathematics proficiency construct within a 
local context. The 5-factor model, proposed by Kilpatrick et al. (2001), represents 
a holistic view of mathematics proficiency. However, the model requires some 
comprehensive assessments to test the model as well examine whether all the 
factors are estimable. Thus, this study delimits its investigation into conceptual 
understanding, procedural fluency, and strategic competence factors. Moreover, 
these are the rudimentary mathematics abilities that are essential as foundations 
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for related constructs, such as mathematics reasoning and mathematics 
communication. Hopefully, the findings would trigger more effort in enriching 
our knowledge of the mathematics proficiency construct within our own local 
context.

The study also has several practical implications that warrant further investigation 
into developing proficiency in teaching mathematics. First, assessments should be 
planned to promote greater mathematics proficiency rather than to rank students. 
Assessments should be in the form of criterion-referenced, where information 
about what students know and are able to do are available so that they can learn 
from the assessment. Teachers, on the other hand, can use the information to 
make effective instruction decisions sincebecause feedback generally leads to 
clearer and more effective instruction (Fennema, Carpenter, Franke, Levi, Jacobs, 
& Empson, 1996; Thompson & Briars, 1989).

Regarding mathematics pedagogy in schools, the findings clearly showed 
the importance of making connections within and among topics to nurture 
proficiency. Mathematics cannot and should not be taught as an isolated 
construct; rather, mathematics should be interwoven and interdependent among 
topics or strands. Successful learning can be characterised by comprehension of 
mathematical ideas. As such, teaching Mathematics also requires similar aspects. 
Mathematics teachers must possess knowledge that is connected: knowledge 
of Mathematics, students, and pedagogy (Kilpatrick et al., 2001). Integrated 
knowledge of Mathematics (the content), knowledge on how students develop 
their understanding (the psychology of learning), and knowledge on how 
Mathematics should be taught (the teaching method) are the kinds of knowledge 
that would very much make a difference in teaching and learning.
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APPENDIX: SAMPLE ITEMS

Conceptual Understanding

7 In algebraic term 
3
x yz2

- , which statements are TRUE?

I     Coefficient of z is -x2y

II    Coefficient of y is -x2y

III  Coefficient of yz is 
3
x 2

-  

IV  Coefficient of x2yz is 
3
1-  

A I and II C II and III 

B I and III D III and IV
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Procedural Fluency

8  12 ( 9 ) ( 3 )w y wxy x y3 3 2 3
' #- - =

A 4w xy2 4 C 4w x y4 3 6

B 4w x y4 2 3 D
9
4
x y
w
3 2

2

Strategic Competence

6 A square cardboard has an area of 324 cm2. It is cut into 9 pieces of equal width and length. 

If all equal pieces are joined to form a long piece, find the length, in cm, of the long piece.
   
A 18 C 72

B 54 D 84


