Relationship between Retinal Blood Flow and Arterial Oxygen.
Cheng RW1,2, Yasef E1,3,4, Tse E1, Jong M1,5, Duffin K2,6, Flanagan JG1,7,8, Fisher JG2,6,3, Hudson C1,3,7.

Author Information
1Department of Ophthalmology and Vision Sciences, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
2Department of Physics, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada, M5S 1A8.
3School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1.
4Department of Optometry and Visual Science, International Islamic University of Malaysia, Bandar Iskandar Mahkota, 25200, Pahang, Malaysia.
5Brien Holden Vision Institute, University of New South Wales, Level 4 North Wing, Rupert Myers Building, Gate 14 Barker Street, Sydney, NSW, 2052, Australia.
6Thornhill Research Inc., 200 Elizabeth Street, Suite 7EN242, Toronto, ON, Canada, M5G 2C4.
7Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada, M5S 1A8.
8School of Optometry, University of California Berkeley, 341 Minor Hall, Berkeley, CA, 94720-2020.
9Department of Anaesthetics, Toronto General Hospital, 200 Elizabeth St, Toronto, ON, Canada, M5G 2C4.

Abstract
Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia), but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modeled in the retina in particular the vascular reserve and resting tonus of the vessels. The objective of this study was to determine the limitations of the retinal vasculature by modeling the relationship between RBF and oxygen. Retinal vascular response were measured in 13 subjects for 8 different blood gas conditions, with the end-tidal partial pressure of oxygen (PET O2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice, using the Canon Laser Blood Flowmeter (CLBF) during the first visit, and using Doppler Spectral Domain Optical Coherence Tomography (Doppler SD-OCT, RTVue) during the second visit. We determined that the relationship between RBF and PaO2 can be modeled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in this study, but can no longer compensate below a PET O2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg PET O2, p<0.001) and decreasing diameter (6.8% arteriolar and 23% total venous area) with hyperoxia (500 mmHg PET O2, p<0.001) to the same extent, indicating that the resting tonus is near the midpoint of the adjustment range at resting PaO2 where sensitivity is maximum. This article is protected by copyright. All rights reserved.

PMID: 26607393 [PubMed - as supplied by publisher]

LinkOut - more resources