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Abstract: A new approach for defect classification and quantification by using pulsed eddy current
sensors and integration of principal component analysis and wavelet transform for feature based
signal interpretation is presented. After reviewing the limitation of current parameters of peak value
and its arrival time from pulsed eddy current signals, a two-step framework for defect classification
and quantification is proposed by using adopted features from principal component analysis and
wavelet analysis. For defect classification and quantification, different features have been extracted
from the pulsed eddy current signals. Experimental tests have been undertaken for ferrous and
non-ferrous metal samples with manufactured defects. The results have illustrated the new
approach has better performance than the current approaches for surface and sub-surface defect
classification. The defect quantification performance, which is difficult by using current approaches,
is impressive.

1 Introduction

Non-destructive testing (NDT) technologies have wide
applications in the transportation, aerospace, automotive,
manufacturing, petrochemical, and defence industries [1].
Particularly, eddy current NDT has been used for metal
inspection for more than four decades with the distinct
advantages for these particular applications. NDT requires
detection, classification and quantification of defects to meet
safety standards, and calculations of structural safety.
Accurate characterisation of surface and sub-surface flaws
still poses a major challenge [2].

One of the recent developments in eddy current NDT
techniques is the emergence of pulsed eddy current (PEC)
techniques [3]. These techniques, in contrast to the
conventional techniques that use a single frequency
excitation, use a pulsed coil excitation. The pulsed excitation
is comprised of a spectrum of frequencies, which allows
simultaneous inspection to different depths of the target
owing to the skin effect. This enables the detection and
characterisation of flaws at the surface and sub-surface.
Interpretation techniques are required to translate the
transient response from pulsed eddy current sensors into
useful information. These techniques have the potential
advantages of greater penetration, the ability to locate
discontinuities from time-of-flight determinations and a
ready means of multi-frequency measurement. However,
the lack of interpretation techniques is one of the main
reasons why PEC sensing is not widely used by the NDT
community [4]. This difficulty can be overcome by using the
recent advances in computing power and signal processing

techniques, and already a number of different approaches
on interpreting the eddy current sensor response using
advanced signal processing techniques such as independent
component analysis (ICA) and pattern recognition techni-
ques have been proposed [5, 6].

The rest of the paper is organised as follows. In the
following Sections, a new approach of defect classification
and quantification based on principal component analysis
(PCA) and wavelet transforms (WT) for our PEC system [7]
is presented. Sections 2 and 3 introduce the PCA and
wavelet transform for the PEC signals. Section 4 reports
using the new data analysis for defect classification and
quantification. Following the proposed approach, experi-
ments and results are presented. Finally, conclusions and
further work are outlined.

2 PCA

PCA is extensively used in feature extraction to reduce
the dimensionality of the original data by a linear
transformation. PCA extracts dominant features (principal
components) from a set of multivariate data. The dominant
features retain most of the information, both in the sense
of maximum variance of the features and in the sense of
minimum reconstruction error. PCA is widely used in
face recognition [8–10]. It is also used in vehicle sound
signature recognition [11], speech recognition [12], speaker
recognition [13], medical applications [14–16], signal noise
reduction [17], and active noise control [18], among others.

The suggested approach in this paper has been adopted
from a feature extraction technique for face recognition [9].
It requires training where a data set from various testing
conditions is required as input. In this case, the data will be
PEC time-series signals from various different flaws, and a
few signals recorded for each flaw. To obtain the principal
components or eigensignals, each data set from an
observation is formed into a column vector, Cn, whose
length N is dependent on the number of variables used. For
M observations, an array matrix C with the size of M�N
will be obtained, hence

C ¼ ½C1;C2;C3; . . . ;CM � ð1Þ
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The average signal �C is defined by:

�C ¼ 1

M
�
XM
n¼1

Cn ð2Þ

Difference signals are computed by subtracting the average
signal from each training signal:

Fi ¼ Ci � �C ð3Þ
These vectors are now subjected to principal component
analysis. To find the orthogonal eigensignals, the covariance
matrix C should be worked out:

C ¼ 1

M

XM
n¼1

Fn � FT
n ¼

1

M
A � AT ð4Þ

where A ¼ ½F1;F2; . . . ;FM �.
However, the determination of the eigenvectors for

covariance matrix C will require excessive computation as
the matrix C will have the size of N�N. A better way is

considered. If mi are the eigenvectors of AT � A and l are
the eigenvalues:

ATAvi ¼ livi ð5Þ
then the eigenvectors of C can be computed by:

ui ¼ Avi ð6Þ
where C ¼ AT � A. These ui are referred to as eigensignals.
Having obtained the eigensignals, the most significant M
eigensignals are chosen according to the largest correspond-
ing eigenvalues. Any signal can be identified as a linear
combination of the eigensignals. The principal components
for any signal C are defined by:

wk ¼ uT
k ðC� �CÞ ð7Þ

The value wk represents the data mapped into the axis
corresponding to the eigenvector. These values are the new
features that can be used for classification and recognition
purposes, and in our case, they might correlate with
quantities to be measured. Signals can be presented by a
linear combination of eigenvectors, where the number of
eigenvectors will decide the accuracy of the signal
reconstruction. To illustrate how the feature extraction
can be presented by lower dimensional vectors, two main
eigenvectors are chosen.

3 Wavelet transforms

Wavelet analysis is a relatively new technique in
signal processing. The fundamental idea behind wavelet
analysis is to analyse according to scale, therefore
both coarse and fine features of a data signal can be
probed [19]. The analysis is done in both time and frequency
domains, while the similar and widely used Fourier analysis
only provides a frequency aspect. This extra ability makes
wavelet analysis suitable to analyse transient phenomena in
a signal.

Wavelet analysis is presently used in various applications,
including astronomy [19], classification of washing machine
vibration signals [20], speech recognition [21, 22], finger-
print recognition [23], engine diagnosis [24], condition
monitoring [25, 26], and medical applications [27, 28]
among others.

The wavelet transform (WT) performs the decomposition
of a signal onto the family of wavelet functions generated
from a prototype function, called the mother wavelet, CðtÞ
by dilation and translation operations [29]. The wavelet
transform of a signal f (t) can be computed by using the

following equation:

ca;b ¼
Z 1
�1

f ðtÞCa;bðtÞdt ð8Þ

where a and b are scale and space parameters, respectively.
The signal can be decomposed into orthogonal subspaces,
each containing information about details at a given
resolution. The mother wavelet is constructed from the
scaling function f(t). More details can be found in [29].

Wavelets can be used to pre-process data in order to
better locate and identify significant events [30]. PCA is a
statistical process for feature extraction by reducing the data
dimensionality using orthogonal basis. Combining this type
of data pre-processing with multivariate statistics can
generate useful insights into the problem of data analysis
and data interpretation. The integrative approach treats a
time signal as if it were made up from numerous individual
signals of limited duration (the wavelets). The wavelets
occur at various times; they are characterised by their
location on the time axis and by their resolution (their
duration is short for a high resolution, long for low
resolution). The wavelet transform is a series of coefficients
indicating the amplitude of each of the wavelets. PCA will
be applied to these coefficients, which is proposed for defect
classification and quantification in the following Sections.

4 Defect characterisation

In the characterisation of defects, three stages have been
proposed. Defect detection is the first stage where a feature
threshold is set to conclude whether the part of the sample
being tested has a discontinuity or not. If a discontinuity is
predicted then the second stage, defect classification, is
carried out. Here, the discontinuity is classified to a defect
class, such as surface cracks and sub-surface cracks. This
stage is important as it allows accurate defect sizing at the
following stage. Subsequently, the sizing or the quantifica-
tion of the defect is performed to gain information about
the severity of the detected defect. Figure 1 shows the stages
in defect characterisation. Following all the information, a
decision is made whether the material or structure under
test can still be operating safely or if repair work must be
scheduled, or even if a replacement must be obtained.

In the proposed approach, in order to be able to provide
both the defect type and size, hierarchical PCAs are used to
analyse the PEC signals as illustrated by the block diagram
shown in Fig. 2. As shown in the diagram, in general the
whole process is divided into two stages; first, the class of
flaw is defined, and second, the size of the flaw is defined.
Each stage will comprise of similar steps, which include
wavelet transforms and PCA.

The steps in each stage have been shown in the block
diagram in Fig. 3. The motivation for the integration of
PCA and WT is for better extraction of defect information.
The wavelet transform naturally separates the high
frequency noise and also allows extraction of specific
frequency components relevant to the penetration of the
eddy current. The differential approach improves the
sensitivity of defect quantification and discriminability of

defect
detection

defect
classification

defect
quantification

Fig. 1 Defect characterisation stages
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defect classification. The processes in the shaded boxes are
performed off-line, while those in boxes with solid lines are
performed on-line. Off-line processes are undertaken before
the actual inspection is carried out. These include setting up
a training data set by recording signals representing relevant
flaws and a flawless part. After calculating the wavelet
coefficients of the signals, using the steps described in
Section 2, the eigensignals or PCA basis are generated and
ready to be used in the on-line processes.

On-line processes are performed during the actual
inspection of a given sample. They start with recording a

reference signal from a flawless part of the sample. The
wavelet transform is then applied to the signal generating
wavelet coefficients at appropriate levels, which are
discussed in the following two Sections. Subsequently,
PCA mapping is carried out by basically summing the
weighted wavelet coefficients, while the weightings are given
by the pre-recorded eigensignals. This results in PCA
coefficients representing the reference signal. Then, the same
steps apply to the flaw signal resulting in PCA coefficients
representing the flaw signal. Finally, differential PCA
coefficients are worked out by finding the difference
between the two sets of PCA coefficients representing the
reference and flaw signals. The differences between the
wavelet-based PCA for flaw classification and that for flaw
quantification are described separately as follows.

4.1 Defect classification using wavelet-
based PCA
At this stage, it is attempted to assign a detected flaw to a
defect class. The conventional feature extraction technique
for PEC is based on the peak characteristics of PEC
differential signals [1] that are obtained by subtracting a
defect-free signal from flaw signals. Figure 4 shows some
typical examples of these signals. The peak value and time
are used to classify detected defects. These two features are
not sufficient for in-field inspection, the features can easily
become ineffective owing to noise interference and lift-off
variation. Secondly, more information is often required for
quantification purposes.

For the proposed technique using wavelet-based PCA, the
training data set is comprised of signals representing flaws of
different types, which may include, for example, surface
defects, sub-surface defects, and metal losses. Figure 5
illustrates the first two eigensignals of test sample signals
for flaw classification. The mother wavelet chosen for
simplifying the implementation is the Morlet wavelet because
it is known to provide better localisation, both spatial and
frequency, although a redundant wavelet transform may be
better for this type of work [31]. The two eigensignals are
clearly unrelated. The first eigensignal’s local maxima and
minima points highlight the points in time where the major
differences are taking place among the training signal wavelet
coefficients. From the point of wavelet analysis, it is noticed
that good discrimination is achieved when high levels (low
resolution wavelet coefficient bands) are used. This is as

PEC signals

feature extraction using
wavelet-based PCA for

defect identification 

defect
quantification

defect classification

feature extraction using
wavelet-based PCA for
defect quantification 

Fig. 2 Flow diagram of the new approach
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Fig. 3 Flow diagram of the wavelet-based PCA for defect
classification/quantification
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expected as these levels correspond to low frequencies that
are required to achieve deep penetration.

4.2 Defect quantification using wavelet-
based PCA
In contrast to the wavelet-based PCA for flaw classification,
the training data set is comprised of signals representing
flaws of the same type and of various sizes. Figure 6
illustrates eigensignals for flaw quantification. This stage is
carried out once the type of the flaw is already identified
from the defect classification. For example, this should
produce estimation of the depth of the flaw for sub-surface
defects or the sizes of surface defects. The levels of wavelet
transform are variable depending on the flaw type and its
expected range of sizes.

The eigensignals in Figs. 5 and 6 give high weightings at
the beginning of the signals, i.e. coefficients numbered
between 1 and 1000 approximately. The timing or locations
of these high weightings seem to correspond to the peaks of
the signals in time domain. The features obtained using this
technique for maximising the discriminability or sensitivity
for quantification may be combined with the conventional
time-domain features of peak time and peak values from
differential signals.

For the conventional technique, the peak arrival time
mainly indicates the depth of defects.

5 Experimental setup

To evaluate the performance of the proposed technique,
comparative experiments are carried out. Both techniques
of the proposed wavelet-based PCA and conventional peak-
value features for defect classification and quantification are
used to analyse the same signals obtained from ferromag-
netic and non-ferromagnetic materials in two separate
experiments. For the non-ferromagnetic material, alumi-
nium is chosen, and for the ferromagnetic, a carbon steel is
chosen. For each material, two samples are prepared: one
sample to simulate metal loss defects, and the other for
surface and sub-surface defects. The aluminium samples are
shown schematically in Fig. 7. For sub-surface slot detec-
tion, we probe the sample shown in Fig. 7b over its top
surface, and for surface slots, we probe over the reverse side.

The steel samples have similar layouts but have different
sizes of defects. Magnetisation is used during steel
inspection to reduce the effective relative permeability and
reduce the magnetic property variation. The setup is shown
in Fig. 8.

In the experiment, both the conventional and the
proposed approaches are used to classify the defects. It will
also be shown how the new method performs quantification
of defects having classified the detected defects. Initially, a
training data set is created by recording signals from all
available defects. Ten signals are recorded for each defect.
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6 Results

6.1 Aluminium testing

6.1.1 Classification: Figure 9 shows how classifica-
tion has been achieved using both techniques. It demon-
strates how the two techniques have achieved separation of
the detected defects according to their types qualitatively.
Table 1 shows quantitatively the classification success rate
using both techniques, where all the samples are calibrated.
It can be seen that the wavelet-based PCA performs better
with a higher number of correct identifications. The lower
success rates of the approach using the peak values and
arrival times is attributed to its higher sensitivity to noise.
The rates are derived after five measurements are taken for
each defect described in the preceding Section.

6.1.2 Quantification: Both techniques can be used to
achieve defect sizing as illustrated in Fig. 10. The advantage
of the peak value and the time at the peak value is that it
allows faster processing by simple computation. However,
the repeatability is poor, especially when the defect is buried
deeply. In contrast, the robustness of wavelet-based PCA
for the defect quantification is much better than the
conventional approach; the 3-D distribution is particularly
useful for defect quantification.

6.2 Steel testing

6.2.1 Classification: The classification cannot be
achieved by using the conventional peak-value features as
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the differential signals do not have local maxima as shown
in Fig. 11. The ferromagnetic steel samples amplify the
magnetic field measured as they reduce the resistance of the
magnetic circuits. Therefore, the presence and absence (e.g.
slot) of the material alters the resistance and hence the
measured magnetic field intensity. This is in contrast to the
situation where the aluminium samples are used. In this
case, the intensity will be constant provided the eddy current
has disappeared regardless of the presence or absence of the
material. The variation of the field intensity in the steel
samples leads to the non-existence of the peak in
the differential signals rendering the approach unusable.
However, good separation can be achieved by using the

proposed wavelet-based PCA as shown in Fig. 12. The
defects of different types have been clustered correctly
according to their type.

6.2.2 Quantification: For quantification of defects in
steel samples, a new approach is proposed. The measured
base signals representing the magnetic field intensity are
normalised to its amplitude prior to the calculation of the
differential signals. In this way, the magnetic field intensity

Table 1: Classification rates using both techniques

Correct identification rate (%)

Surface slot Sub-surface Slot Sub-surface metal loss No defect

Wavelet-PCA 100 95.0 97.7 100

Peak value and the time 100 90.0 88.9 40.0
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variation owing to the variation in the resistance of the
magnetic circuit is suppressed. The differential signals for
steel samples under magnetisation calculated using this
approach are illustrated in Fig. 13. For the classification, the
peak time and value-based technique fails. The proposed
technique, however, produces discernable features from
negative peaks with magnitude and the time of peak value,
which have correlation with the sizes of defects. Experi-
ments have shown that the quantification of defects is
strongly correlated with the calibrated data of samples.

7 Conclusions

A new approach for NDT using hierarchical wavelet-based
PCA has been proposed and investigated. The results show
that this approach, using a combination of wavelet and
PCA, provides better results for the classification of defect
types than the conventional approach. The integration
approach provides a better location and identification of
significant events by reducing the dimensionality. More
deeply-buried flaws are identified correctly using the
proposed technique. This also shows that the new technique
is more robust than the technique using peak value and
peak time. The proposed approach is a flexible method for
defect classification and quantification by using different
PCA basis. The results also demonstrate that the new
wavelet-based PCA approach has a quantitative capability.
In this case it provides the depths of the defects.

Following a common practice in electromagnetic NDT
steel inspection the use of magnetisation with PEC has been
performed for flaw detection in ferromagnetic steels. The
results also show the robustness of the developed feature
extraction technique that successfully achieves the classifica-
tion of flaws in the ferromagnetic samples, although defect
sizing has not been achieved with these samples. The
conventional technique is not giving results owing to
the absence of local maxima. Instead, a technique using
the differential signals has been proposed and shown
potentials for both defect classification and quantification.
In addition to dynamic inspection of defects [32], more
samples from industry will be tested by the proposed
approach in the near future. Further work will use the
proposed approach for reconstruction of defects by using
sensor arrays [33].
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