Evaluation of entrapment potentiality and turbidity removal efficiency of fungi

Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia

Abstract

Turbidity and suspended solids concentration promotes a number of negative effects on freshwater ecosystems. Conventionally, suspended solids and turbidity are removed from raw water by various chemical coagulants but most of them are costly and non-environment-friendly. Whereas, the bioflocculants are environment-friendly and could be used as coagulants. Extracellular polymeric substances (EPS) produced by microorganisms play a definite role to reduce the turbidity of river water which can enhance the aesthetics of river water and other water uses. In this study, pellets-foams were observed from five filamentous fungi isolated from Pusu river water. The strains RWF-01, RWF-02, RWF-03, RWF-04 and RWF-05 showed a good entrainment capability and flocculating rate of 97.69%, 93.42%, 99.18%, 91.34% and 90.21% to kaolin suspension and 44.54%, 99.27%, 98.59%, 20.57% & 68.43% to river water respectively at 6h of culture time. The result showed the clay particles of river water and kaolin has entrapped by the microbial growth and, as a result, they reduced the turbidity of river water. © 2015 Penatar Utm Press. All rights reserved.

Author keywords

Filamentous fungi; Flocculation; Kaolin clay; River water; Turbidity

ISSN: 01275986 Source Type: Journal Original language: English
DOI: 10.11113/j.17596977.2015.01637.x Document Type: Article
Publisher: Penatar Utm Press

References (24)