E-D2CARP: A joint path and spectrum diversity based routing protocol with an optimized path selection for cognitive radio ad hoc networks (Conference Paper)

Che-Aron, Z.\(^a\), Abdalla, A.H.\(^a\), Hassan, W.H.\(^b\), Abdullah, K.\(^a\), Rahman, M.A.\(^c\)

\(^a\)Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia
\(^b\)Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Semarak, Kuala Lumpur, Malaysia
\(^c\)Department of Biomedical Electronics and Telecommunications Engineering, University of Naples Federico II, Naples, Italy

Abstract

Cognitive Radio (CR) is a new paradigm which offers a viable solution to deal with the spectrum shortage problem and enhance the spectrum utilization. In Cognitive Radio Ad Hoc Networks (CRAHNs), data routing is one of the most challenging tasks due to frequent topology changes and intermittent connectivity caused by the activity of Primary Users (PUs). This paper proposes a joint path and spectrum diversity based routing protocol with an optimized path selection for CRAHNs, referred to the Enhanced Dual Diversity Cognitive Ad-hoc Routing Protocol (E-D2CARP). The Expected Path Delay (EPD) routing metric used in the protocol for path decision is also introduced. The protocol utilizes the joint path and spectrum diversity and circumvents the PU regions during path establishment phase in order to make the transmission path less vulnerable to the impact of PU activities and provide efficient route recovery in presence of path failures resulting from PU activities. The performance evaluations are conducted through simulations using the NS-2 simulator. Simulation results obviously demonstrate that the E-D2CARP can achieve better performance in terms of average throughput, packet loss, average end-to-end delay, and average jitter as compared to the recently proposed D2CARP protocol in identical scenarios. © 2014 IEEE.

Author keywords

Cognitive radio ad hoc network, Joint path and spectrum diversity, Optimized path selection, PU region avoidance, Routing protocol

Indexed keywords

Engineering controlled terms: Ad hoc networks, Network routing, Routing protocols, Telecommunication networks

Cited by 2 documents

An energy-efficient and robust multipath routing protocol for cognitive radio Ad Hoc networks
Singh, K., Moh, S. (2017) Sensors (Switzerland)

Routing protocols in cognitive radio ad hoc networks: A comprehensive review

Related documents

RACARP: A Robustness Aware routing protocol for Cognitive radio Ad Hoc Networks
Ad hoc on-demand distance vector (AODV) routing
July

The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4
(2007) RFC 4728, Internet Engineering Task Force (IETF)
February

7. Clausen, T.H., Jacquet, P.
Optimized link state routing protocol (OLSR)
October

8. Perkins, C.E., Bhagwat, P.
Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers
October

9. Cesana, M., Cuomo, F., Ekici, E.
Routing in cognitive radio networks: Challenges and solutions
doi: 10.1016/j.adhoc.2010.06.009
View at Publisher

10. Sengupta, S., Subbalakshmi, K.
Open research issues in multi-hop cognitive radio networks
doi: 10.1109/MCOM.2013.6495776
View at Publisher

11. Rahman, M.A., Caleffi, M., Paura, L.
Joint path and spectrum diversity in cognitive radio Ad-hoc networks
View at Publisher

12. Cacciapuoti, A.S., Calcagno, C., Caleffi, M., Paura, L.
CAODV: Routing in mobile ad-hoc cognitive radio networks
ISBN: 978-142449229-9
doi: 10.1109/WD.2010.5657754
View at Publisher

The Vint Project
http://www.isi.edu/nsnam/ns/index.html
http://nsvisualtraceanalyzer.wordpress.com

Che-Aron, Z.; Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, Malaysia
© Copyright 2015 Elsevier B.V., All rights reserved.