Adaptive neuro-fuzzy control of wet scrubbing process

Salami, M.-J.E., Danzomo, B.A., Khan, M.R.
Mechatronics Engineering Department, Faculty of Engineering, International Islamic University, P.O. Box 10, Kuala Lumpur, Malaysia

Abstract

The non-linear characteristics of wet scrubbing process have led to the application of intelligent control technique to adequately deal with these complexities by manipulating the liquid droplet size for the effective control of particulate matter (PM) contaminants. This includes the use of adaptive neuro-fuzzy inference system (ANFIS) to design an intelligent controller based on direct inverse model control strategy using default input and output membership functions (gaussmf and linear) and different number of input membership functions. This is followed by training of the fuzzy inference system to obtain inverse model which was tested as the intelligent controller. The controller developed using two-input membership functions has successfully achieved the main target of setting the PM concentration (process output) below the set point which is the allowable World health organization (WHO) emission level for $20\, \text{g/μm}^3$ within a short settling time of 2s. © 2015 IEEE.

Author keywords

Adaptive neuro-fuzzy control, wet scrubber system, wet scrubbing process

Source Type: Conference Proceeding
Original language: English

DOI: 10.1109/ASCC.2015.7244419
Sponsors: Malaysia Convention and Exhibition Bureau (MyCEB), Malaysian Palm Oil Council (MPOC), Ministry of Tourism and Culture Malaysia, Sabah Tourism, Visit Malaysia Year 2015
Publisher: Institute of Electrical and Electronics Engineers Inc.

References (24)

1. Yetilmezsoy, K., Saral, A.
 Stochastic modeling approaches based on neural network and linear-nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers

 View at Publisher

 Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction

 View at Publisher

3. Schnelle, K.B., Brown, C.A.
 CRC press

4. Byeon, S.H., Lee, B.K., Raj Mohan, B.
 Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system
 Separation and Purification Technology. Cited 2 times.
 2011

5. Bozorgi, Y., Keshavarz, P., Taheri, M., Fathikaljahi, J.
 Simulation of a spray scrubber performance with Eulerian/Lagrangian approach in the aerosol removing process

 doi: 10.1016/j.jhazmat.2006.02.037

 View at Publisher

6. Garba, M.N.
 (2005) Gas Particle Separations Using Wet Scrubber Method
 (MEng), Bayero University Kano, Nigeria

7. Zhao, B.
 Modeling of particle separation in bends of rectangular cross-section

 Simulation of an orifice scrubber performance based on Eulerian/Lagrangian method

 doi: 10.1016/S0304-3894(03)0066-9

 View at Publisher
Cited 4 times

9. CFD simulation of wet scrubbers part 1. Principles and implementation into commercial CFD software
 doi: 10.1002/cite.201100157
 View at Publisher

10. Krishnaraj, R., Sakhthivel, M., Devadassan, S., Dinesh, M., Navaneethasanthakumar, S.
 Investigation of sand filtration techniques to reduce secondary pollution in wet scrubber

 Simulation of offgas scrubbing by a combined eulerian-lagrangian model
 Melbourne, Australia, December

12. Areed, F.G., Haikal, A.Y., Mohammed, R.H.
 Adaptive neuro-fuzzy control of an induction motor
 doi: 10.1016/j.asej.2010.09.008
 View at Publisher

13. Lei, K.S., Wan, F.
 Applying ensemble learning techniques to ANFIS for air pollution index prediction in Macau
 Springer

14. Pande, P.R., Paikrao, P.L., Chaudhari, D.S.
 (2013) Digital ANFIS Model Design

15. Savic, M., Mihajlovic, I., Zivkovic, Z.
 An ANFIS-based air quality model for prediction of so2 concentration in urban area

 Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
 doi: 10.1016/j.atmosenv.2009.11.005
 View at Publisher

17. Hussain, M.A., Kittisupakorn, P., Daosud, W.
 Implementation of neural-network-based inverse-model control strategies on an exothermic reactor
| 20 | Güner, E. *Adaptive neuro fuzzy inference system applications in chemical processes* (2003) *Middle East Technical University* |
| 21 | (2012) *MATLAB-SIMULINK, MathsWorks Incorporated* |