Renormalization Method in p-Adic lambda-Model on the Cayley Tree

By: Mukhamedov, F (Mukhamedov, Farrukh)

INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
Volume: 54 Issue: 10 Pages: 3577-3595
DOI: 10.1007/s10773-015-2597-z
Published: OCT 2015

Abstract
In the present paper, it is proposed the renormalization techniques in the investigation of phase transition phenomena in p-adic statistical mechanics. We mainly study p-adic lambda-model on the Cayley tree of order two. We consider generalized p-adic quasi Gibbs measures depending for the lambda-model. Such measures are constructed by means of certain recurrence equation, which defines a dynamical system. We study two regimes with respect to parameters. In the first regime we establish that the dynamical system has one attractive and two repelling fixed points, which predicts the existence of a phase transition. In the second regime the system has two attractive and one neutral fixed points, which predicts the existence of a quasi phase transition. A main point of this paper is to verify (i.e. rigorously prove) and confirm that the indicated predictions (via dynamical systems point of view) are indeed true. To establish the main result, we employ the methods of p-adic analysis, and therefore, our results are not valid in the real setting.

Keywords
Author Keywords: p-adic numbers; p-adic quasi Gibbs measure; Phase transition; Dynamical system; Cayley tree
KeyWords Plus: NON-ARCHIMEDEAN FIELDS; DYNAMICAL-SYSTEMS; POTTS-MODEL; GIBBS MEASURES; PHASE-TRANSITIONS; REPLICA SYMMETRY; BETHE LATTICES; BREAKING; BEHAVIOR

Author Information
Reprint Address: Mukhamedov, F (reprint author)

Addresses:

E-mail Addresses: far75m@yandex.ru

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE</td>
<td>ERGS13-024-0057</td>
</tr>
<tr>
<td>IIUM</td>
<td>EDW B 13-029-0914</td>
</tr>
<tr>
<td>Abdus Salam International Centre for Theoretical Physics, Trieste, Italy</td>
<td></td>
</tr>
</tbody>
</table>

This record is from: Web of Science Core Collection - Science Citation Index Expanded

Citation Network

9 Times Cited
83 Cited References

Create Citation Alert
(data from Web of Science Core Collection)

All Times Cited Counts
9 in All Databases
9 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Usage Count
Last 180 Days: 0
Since 2013: 1

Most Recent Citation

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.