A DC-DC circuit using boost converter for low voltage energy harvesting application

Mustapha, N.A.C. (A), Zahirul Alam, A.H.M., Khan, B., Azman, A.W.

Department of Electrical and Computer Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract

A DC-DC step-up voltage converter is designed to convert a very low voltage supply, 35 mV such as from static energy source from body heat. The converter can generate an output voltage up to 210 mV, approximately six times its initial input voltage over a frequency of 36 GHz. The effect of switching transistors, inductor current rise and fall time is also highlighted. The circuit operates using 2 μH inductor and 0.01 F load capacitor, is simulated using PSiS. Simulation tool. This voltage converter is suitable for energy harvesting application in implantable electronic devices. © 2015 Nasir Afzal Che Mustapha, A.H.M. Zahirul Alam, Shereen Khan, Amola Wong Azman.

Author keywords

Boost converter, CMOS, DC-DC converter, low input voltage, Switch transistor