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Abstract. We study various ergodic properties of C*-dynamical systems inspired by
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defined relative to various subspaces, and in terms of weighted means.
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1. Introduction

The study of ergodic theorems in recent years showed that the ordinary
Cesaro means have been replaced by weighted averages

(1)
n−1∑

k=0

akf(T kx).

Therefore, it is natural to ask: is there a weaker summation than Cesaro,
ensuring the unique ergodicity. In [42] it has been established that unique
ergodicity implies uniform convergence of (1), when {ak} is Riesz weight
(see also [38] for similar results). In this paper we are going to study such
kind of problem in general setting. Moreover, we also investigate related
notions such as mixing etc.



A FEW REMARKS ON RELATIVE ERGODIC PROPERTIES OF C*-DYNAMICAL SYSTEMS 3

It is known [14] that the theory of quantum dynamical systems provides
a convenient mathematical description of irreversible dynamics of an open
quantum system investigation of ergodic properties of such dynamical sys-
tems have had a considerable growth. In a quantum setting, the matter is
more complicated than in the classical case. This motivates an interest to
study dynamics of quantum systems (see [27, 28, 29]). Therefore, it is then
natural to address the study of the possible generalizations to quantum
case of various ergodic properties known for classical dynamical systems.
In [8, 46, 51] a non-commutative notion of unique ergodicity was defined,
and certain properties were studied. Recently in [2] a general notion of
unique ergodicity for automorphisms of a C∗-algebra with respect to its
fixed point subalgebra has been introduced. In [3] a generalization of such
a notion for positive mappings of C∗-algebras, and its characterization in
term of Riesz means are given. When studying ergodic properties of such
a system, it has become clear that it is often necessary to work relative
to some subalgebra (or even some more general subspace) of the C*- or
W*-algebra involved (see for example [52],[13],[7]).
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In this paper, we study various ergodic properties of C*-dynamical sys-
tems for semigroup actions and in terms of weighted means. The properties
are to a large extent inspired by the notion of unique ergodicity relative to
the fixed point space as introduced in [2], but of a more general form, for
example allowing one to work relative to other spaces than just the fixed
point space.
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2. Weighted means

Definition 2.1. Let G be a topological semigroup with a right invariant
measure ρ on its Borel σ-algebra, and let X be a Banach space. Consider
a net (fι) ≡ (fι)ι∈I indexed by some directed set I, where fι ∈ L1 (ρ),
fι : G → R+ = [0,∞) and

∫
fιdρ 6= 0. Assume furthermore that fιF is

Bochner integrable for all bounded Borel measurable F : G → X, and that
for such F

lim
ι

∫
fι(g) [F (g)− F (gh)] dg∫

fιdρ
= 0

in the norm topology for all h ∈ G (where dg refers to integration with
respect to the measure ρ). Then we call (fι) a (right) averaging net for
(G,X). If we rather require the condition

lim
ι

∫
fι(g) [F (g)− F (hg)] dg∫

fιdρ
= 0

for all h ∈ G, then we call (fι) a left averaging net for (G,X)
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Proposition 2.2. Let G be a topological semigroup with a right invariant
measure ρ on its Borel σ-algebra. Let (Λι) be a Følner net in G, i.e. Λι is
a compact set in the Borel σ-algebra of G with 0 < ρ (Λι) < ∞ and

lim
ι

ρ (Λι 4 (Λιg))

ρ (Λι)
= 0

for all g ∈ G. Let fι := χΛι
be the characteristic (i.e. indicator) function

of Λι on G. Then (fι) is an averaging net for (G,X) for any Banach space
X.

Proposition 2.3. Let G be a topological group with a right invariant mea-
sure ρ on its Borel σ-algebra, and let X be a Banach space. Consider a
net (Λι, fι) ≡ (Λι, fι)ι∈I indexed by some directed set I, where Λι ⊂ G is
Borel measurable, and fι ∈ L1 (Λι) (in terms of ρ restricted to Λι), such
that fι : Λι → R+ and

∫
Λι

fdρ 6= 0. Assume furthermore that

lim
ι

∫
Λι\(Λιh) fιdρ∫

Λι
fιdρ

= 0 and lim
ι

∫
Λι∩(Λιh)

∣∣fι(g)− f(gh−1)
∣∣ dg∫

Λι
fιdρ

= 0

for all h ∈ G. Define a function f ′ι on G by f ′ι(x) = fι(x) for x ∈ Λι, and
f ′ι(x) = 0 for x /∈ Λι. Then (f ′ι) is an averaging net for (G,X) for any
Banach space X.
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The examples below (for G = R) can be checked by using the proposition
above.

Example 2.4. Consider the case G = R. Set Λn := [0, n] for n = 1, 2, 3, ...
, or even any real n > 0. Let f(t) := ts for an s > −1. Setting fn := f |Λn

,
one can verify that (Λn, fn) gives an averaging net for R as in Proposition
2.3.

Example 2.5. Similarly Λn := [1, n] for n = 2, 3, ..., or even any real
n > 1, along with f(t) = t−1, gives an averaging net for R.

Example 2.6. Lastly, Λn := [0, n] and fn(t) := (n− t)s for s > −1, give
an averaging net for R.
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Theorem 2.7. Consider a topological semigroup G with a right invariant
measure ρ on its Borel σ-algebra, a Hilbert space H, and an averaging net
(fι) for (G,H). Let U be a representation of G as contractions on H, such
that G → H : g 7→ Ugx is Borel measurable for all x ∈ H. Let P be the
projection of H onto the fixed point space V of U , namely

V := {x ∈ H : Ugx = x for all g ∈ G} .

Then

lim
ι

1∫
fιdρ

∫

Λι

fι(g)Ugxdg = Px

for all x ∈ H.
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Definition 2.8. A C*-dynamical system (A,α) consists of a unital C*-
algebra A and an action α of a semigroup G on A as unital completely
positive maps αg : A → A, i.e. as Markov operators. The fixed point
operator system of a C*-dynamical system (A,α) is defined as

Aα := {a ∈ A : αg(a) = a for all g ∈ G} .

By an operator system of A, we mean a norm closed self-adjoint vector
subspace of A containing the unit of A. Whenever we consider a C*-
dynamical system (A,α), the notation G for the semigroup is implied.
Note that since αg is positive and αg (1) = 1, we have ‖αg‖ = 1.

Definition 2.9. A C*-dynamical system (A,α) is called amenable if the
following conditions are met: G is a topological semigroup with a right
invariant measure ρ on its Borel σ-algebra, and furthermore (G,A) has an
averaging net (fι). The function G → A : g 7→ αg(a) is Borel measurable
for every a ∈ A.

A central notion in our work will be that of an invariant state:

Definition 2.10. Given a C*-dynamical system (A,α), a state µ on A is
called an invariant state of (A,α), or alternatively an α-invariant state, if
µ ◦ αg = µ for all g ∈ G.

Definition 2.11. We call the C*-dynamical system (A,α) uniquely ergodic
relative to Aα if every state on Aα has a unique extension to an invariant
state of (A,α).
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Theorem 2.12. Let (A,α) be an amenable C*-dynamical system, with
G unimodular with respect to the measure ρ, and let (fι) be both a right
and left averaging net for (G,A). Then statements (i) to (vi) below are
equivalent.

(i) The system (A,α) is uniquely ergodic relative to Aα.
(ii) The limit

lim
ι

1∫
fιdρ

∫
fι (g) αg(a)dg

exists for every a ∈ A.
(iii) The subspace Aα+ span{a− αg(a) : g ∈ G, a ∈ A} is dense in A.

(iv) The equality A = Aα + span {a− αg(a) : g ∈ G, a ∈ A} holds.
(v) Every bounded linear functional on Aα has a unique bounded α-

invariant extension to A with the same norm.
(vi) There is a positive projection E of A onto some operator system B

of A such that for every a ∈ A and ϕ ∈ S(A), where S(A) denotes
the set of all states on A, one has

lim
ι

1∫
fιdρ

∫
fι (g) ϕ(αg(a))dg = ϕ(E(a))

(in which case necessarily B = Aα and αg ◦ E = E = E ◦ αg for all
g ∈ G).

Furthermore, statements (i) to (vi) imply the following statements:

(vii) There exists a unique α-invariant positive projection E from A onto
Aα.

(viii) The positive projection E in (vii) is given by

Ea = lim
ι

1∫
fιdρ

∫
fι (g) αg(a)dg

for all a ∈ A.
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Let (A,α) be a C∗-dynamical system, let E : A → A be a bounded linear
operator, and let S be a set of bounded linear functionals on A. In what
follows, by S(A) we denote the set of all states defined on A.

Definition 2.13. A C∗-dynamical system (A,α) for the action of a topo-
logical semigroup G is called S-weakly amenable, for a set S ⊂ A∗, if the
following holds: There is a right invariant measure ρ on G, an averaging
net (fι) for (G,C), and G → C : g 7→ ϕ (αg (a)) is Borel measurable for
every a ∈ A and ϕ ∈ S.

Definition 2.14. Let (A,α) be an S-weakly amenable C∗-dynamical sys-
tem, with G unimodular with respect to the right measure ρ and let (fι)
be an averaging net for (G,C). Then (A,α) is said to be

(i) unique (E, S)-ergodic w.r.t. (fι) if one has

(2) lim
ι

1∫
fι

∫
fι(g)ϕ(αg(x− E(x)))dg = 0 , x ∈ A , ϕ ∈ S ;

(ii) unique (E, S)-weakly mixing w.r.t. (fι) if one has

(3) lim
ι

1∫
fι

∫
fι(g)

∣∣ϕ(αg(x− E(x)))
∣∣dg = 0 , x ∈ A , ϕ ∈ S .
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Theorem 2.15. Let (A,α) be an S-weakly amenable C∗-dynamical system
and let (fı) be an averaging net for (G,C). Let the dynamical system
(A ⊗ A,α ⊗ α) be unique (E ⊗ E,S ⊗ S)-ergodic, and assume that E
preserves the involution (i.e. E(x∗) = E(x)∗) and that S is self-adjoint.
Then (A,α) is unique (E,S)-weakly mixing.

Remark 2.16. We note that in [8, 47, 56] similar results were proved for
weak mixing dynamical systems defined over von Neumann algebras.

Theorem 2.17. Let (A,α) and (B, β) respectively be an S-weakly amenable
and an H-weakly amenable C∗-dynamical system, and let (fı) be an av-
eraging net for (G,C). If (A,α) is unique (Eα,S)-weakly mixing and
(B, β) unique (Eβ,H)-ergodic with αgEα = Eα for all g ∈ G, then the
C∗-dynamical system (A⊗B, α⊗ β) is unique (Eα ⊗ Eβ,S ⊗H)-ergodic.
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