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1. INTRODUCTION

The study of ergodic theorems in recent years showed that the ordinary

Cesaro means have been replaced by weighted averages

n—1
(1) > arf(TF).

k=0
Therefore, it is natural to ask: is there a weaker summation than Cesaro,
ensuring the unique ergodicity. In [42] it has been established that unique
ergodicity implies uniform convergence of (1), when {a;} is Riesz weight
(see also [38] for similar results). In this paper we are going to study such
kind of problem in general setting. Moreover, we also investigate related
notions such as mixing etc.
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It is known [14] that the theory of quantum dynamical systems provides
a convenient mathematical description of irreversible dynamics of an open
quantum system investigation of ergodic properties of such dynamical sys-
tems have had a considerable growth. In a quantum setting, the matter is
more complicated than in the classical case. This motivates an interest to
study dynamics of quantum systems (see [27, 28, 29]). Therefore, it is then
natural to address the study of the possible generalizations to quantum
case of various ergodic properties known for classical dynamical systems.
In [8, 46, 51] a non-commutative notion of unique ergodicity was defined,
and certain properties were studied. Recently in [2] a general notion of
unique ergodicity for automorphisms of a C*-algebra with respect to its
fixed point subalgebra has been introduced. In [3] a generalization of such
a notion for positive mappings of C*-algebras, and its characterization in
term of Riesz means are given. When studying ergodic properties of such
a system, it has become clear that it is often necessary to work relative
to some subalgebra (or even some more general subspace) of the C*- or

W-algebra involved (see for example [52],[13],[7]).
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In this paper, we study various ergodic properties of C*-dynamical sys-
tems for semigroup actions and in terms of weighted means. The properties
are to a large extent inspired by the notion of unique ergodicity relative to
the fixed point space as introduced in [2], but of a more general form, for
example allowing one to work relative to other spaces than just the fixed
point space.
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2. WEIGHTED MEANS

Definition 2.1. Let GG be a topological semigroup with a right invariant
measure p on its Borel o-algebra, and let X be a Banach space. Consider
a net (f,) = (f.),; indexed by some directed set I, where f, € L' (p),
fi: G — Rt =[0,00) and [ f,dp # 0. Assume furthermore that f,F is
Bochner integrable for all bounded Borel measurable F': G — X, and that

for such F'
i L9 [F(9) = F(gh)]dg _
im —
t ffbdp
in the norm topology for all h € G (where dg refers to integration with
respect to the measure p). Then we call (f,) a (right) averaging net for
(G, X). If we rather require the condition

i @ E(9) — F(hg)ldg _
L ffbdp
for all h € G, then we call (f,) a left averaging net for (G, X)

0
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Proposition 2.2. Let G be a topological semigroup with a right invariant
measure p on its Borel o-algebra. Let (A,) be a Folner net in G, i.e. A, is
a compact set in the Borel o-algebra of G with 0 < p(A,) < oo and

A, AN (A,

L p (A A (Ag))
L p(A)

for all g € G. Let f, := xu, be the characteristic (i.e. indicator) function

of A, on G. Then (f,) is an averaging net for (G, X) for any Banach space
X.

=0

Proposition 2.3. Let G be a topological group with a right invariant mea-
sure p on its Borel o-algebra, and let X be a Banach space. Consider a
net (A, f,) = (A, f,),c; indexzed by some directed set I, where A, C G is
Borel measurable, and f, € L' (A,) (in terms of p restricted to A,), such
that f, : A, — R and fAL fdp # 0. Assume furthermore that

.d (g) — f(gh™H|d
lim fA‘\(A‘h) 1uop =0 and lim fALm(ALh) ’f s )’ J =0
o [y Fdp ! Ja fidp

for all h € G. Define a function f| on G by f/(x) = f,(x) for x € A,, and
fi(x) =0 forx & A,. Then (f]) is an averaging net for (G, X) for any
Banach space X.
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The examples below (for G = R) can be checked by using the proposition
above.

Example 2.4. Consider the case G = R. Set A, := [0,n] forn =1,2,3, ...
, or even any real n > 0. Let f(¢) :=t* for an s > —1. Setting f,, := f|a,,
one can verify that (A, f,) gives an averaging net for R as in Proposition
2.3.

Example 2.5. Similarly A, := [1,n] for n = 2,3,...; or even any real
n > 1, along with f(¢) = t~1, gives an averaging net for R.

Example 2.6. Lastly, A, := [0,n] and f,,(¢) := (n —t)" for s > —1, give
an averaging net for R.
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Theorem 2.7. Consider a topological semigroup G with a right invariant
measure p on its Borel o-algebra, a Hilbert space H, and an averaging net
(f.) for (G, H). Let U be a representation of G as contractions on H, such
that G — H : g — Ugx 1s Borel measurable for all x € H. Let P be the
projection of H onto the fized point space V' of U, namely
Vi={veH:Ug=u foralgeG}.
Then |
1im—/ f(9)U,xdg = Px
L f Judp A, !

forallz € H.
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Definition 2.8. A C*-dynamical system (A, «) consists of a unital C*-
algebra A and an action « of a semigroup G on A as unital completely
positive maps a, : A — A, i.e. as Markov operators. The fized point
operator system of a C*-dynamical system (A, «) is defined as

A :={a e A:oy(a) =aforall g € G}.

By an operator system of A, we mean a norm closed self-adjoint vector
subspace of A containing the unit of A. Whenever we consider a C*-
dynamical system (A, «), the notation G for the semigroup is implied.
Note that since o is positive and «a, (1) = 1, we have ||| = 1.

Definition 2.9. A C*-dynamical system (A, «) is called amenable if the
following conditions are met: G is a topological semigroup with a right
invariant measure p on its Borel o-algebra, and furthermore (G, A) has an
averaging net (f,). The function G — A : g — ay(a) is Borel measurable
for every a € A.

A central notion in our work will be that of an invariant state:

Definition 2.10. Given a C*-dynamical system (A, «), a state g on A is
called an invariant state of (A, ), or alternatively an a-invariant state, if
poa,=pforalged.

Definition 2.11. We call the C*-dynamical system (A, ) uniquely ergodic
relative to A” if every state on A% has a unique extension to an invariant
state of (A, «).
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Theorem 2.12. Let (A,«) be an amenable C*-dynamical system, with
G unimodular with respect to the measure p, and let (f,) be both a right
and left averaging net for (G, A). Then statements (i) to (vi) below are
equivalent.
(i) The system (A, «) is uniquely ergodic relative to A®.
(ii) The limit
1
im0 / fi(g) ag(a)dg
exists for every a € A.
(iii) The subspace A+ span{a — ay(a) : g € G,a € A} is dense in A.
(iv) The equality A = A* 4 span{a — ay(a) : g € G,a € A} holds.
(v) Every bounded linear functional on A® has a unique bounded o-
invariant extension to A with the same norm.
(vi) There is a positive projection E of A onto some operator system B

of A such that for every a € A and p € S(A), where S(A) denotes
the set of all states on A, one has

a5 | 0 2las(a)ds = ()
(in which case necessarily B = A* and ayjo E = E = E o« for all
ge@G).

Furthermore, statements (i) to (vi) imply the following statements:

(vil) There exists a unique a-invariant positive projection E from A onto

A~
(viii) The positive projection E in (vii) is given by

1
Ea = lim T7dp / fi(g) ag(a)dg
for all a € A.

lim
L
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Let (A, «) be a C*-dynamical system, let £ : A — A be a bounded linear
operator, and let .S be a set of bounded linear functionals on A. In what
follows, by S(A) we denote the set of all states defined on A.

Definition 2.13. A C*-dynamical system (A, «) for the action of a topo-
logical semigroup G is called S-weakly amenable, for a set S C A*, if the
following holds: There is a right invariant measure p on GG, an averaging
net (f,) for (G,C), and G — C : g — ¢ (a,4(a)) is Borel measurable for
every a € A and ¢ € S.

Definition 2.14. Let (A, a) be an S-weakly amenable C*-dynamical sys-
tem, with G unimodular with respect to the right measure p and let (f,)
be an averaging net for (G,C). Then (A, «) is said to be

(i) wunique (E,S)-ergodic w.r.t. (f,) if one has
@ tmpy [ el - E@)dg=0. r€ g5

(ii) umque (E, S)-weakly mizing w.r.t. (f,) if one has

(3) 77 [ 0)letoste — E@)lda =0, vedges.
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Theorem 2.15. Let (A, a) be an S-weakly amenable C*-dynamical system
and let (f,) be an averaging net for (G,C). Let the dynamical system
(AR A a® a) be unique (E ®@ E,S ® S)-ergodic, and assume that E
preserves the involution (i.e. E(z*) = E(x)*) and that S is self-adjoint.
Then (A, ) is unique (E,S)-weakly mizing.

Remark 2.16. We note that in [8, 47, 56] similar results were proved for
weak mixing dynamical systems defined over von Neumann algebras.

Theorem 2.17. Let (A, o) and (B, 3) respectively be an S-weakly amenable
and an H-weakly amenable C*-dynamical system, and let (f,) be an av-
eraging net for (G,C). If (A, «a) is unique (E,,S)-weakly mizing and
(B, 8) unique (Eg, H)-ergodic with a,E, = E, for all g € G, then the
C*-dynamical system (A® B,a ® [3) is unique (E, ® Eg, S ® H)-ergodic.
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