alpha-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPAR gamma, GLUT4, and Leptin Expressions

By: Taher, M (Taher, Muhammad)[1]; Amrioudine, MZAM (Amrioudine, Mohamed Zaffar Ali Mohamed)[1]; Zakaria, TMFST (Zakaria, Tengku Muhamad Faris Syafiq Tengku)[1]; Susanti, D (Susanti, Deny)[2]; Ichwan, SJA (Ichwan, Solachuddin J. A.)[3]; Kaderi, MA (Kaderi, Mohd Arifin)[4]; Ahmed, QU (Ahmed, Qamar Uddin)[5]; Zakaria, ZA (Zakaria, Zainul Amiruddin)[6]

EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE

Article Number: 740238
DOI: 10.1155/2015/740238
Published: 2015

View Journal Impact

Abstract

Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of alpha-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPAR gamma, GLUT4, and leptin expressions. alpha-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of alpha-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated controls. Analyses of 2-deoxy-D-[H-3]glucose uptake activity showed that alpha-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, alpha-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of alpha-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPAR gamma gene expression. Induction of glucose uptake and free fatty acid release by alpha-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that alpha-mangostin might be possible candidate for the effective management of obesity in future.

Keywords

KeyWords Plus: LIPID DROPLET ACCUMULATION; GARCINIA-MANGOSTANA; SIGNALING PATHWAY; DOWN-REGULATION; ADIPOSE-TISSUE; TUMOR-GROWTH; OBESITY; ADIPOGENESIS; XANTHONES; MECHANISM

Author Information

Reprint Address: Taher, M (reprint author)

Int Islamic Univ Malaysia, Dept Pharmaceut Technol, Fac Pharm, Jalan Istana, Kuantan 25200, Pahang, Malaysia.

Addresses:

[1] Int Islamic Univ Malaysia, Dept Pharmaceut Technol, Fac Pharm, Kuantan 25200, Pahang, Malaysia
[3] Int Islamic Univ Malaysia, Fac Dent, Kuantan 25200, Pahang, Malaysia

Citation Network

3 Times Cited
55 Cited References
View Related Records
Create Citation Alert
(data from Web of Science Core Collection)

All Times Cited Counts
3 in All Databases
3 in Web of Science Core Collection
1 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Usage Count
Last 180 Days: 4
Since 2013: 13
Learn more

Most Recent Citation


View All

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.