Hardware implementation of ANFIS controller for gas-particle separations in wet scrubber system

Danzomo, B.A., Salami, M.J.E., Khan, M.R.
Mechatronics Engineering Department, Faculty of Engineering, International Islamic University, P.O. Box 10, Kuala Lumpur, Malaysia

Abstract

Wet scrubber system has been used for the control of gas and particulate matter (PM) emissions from production industries. Due to non-linear characteristics, wet scrubbers are limited to the control of PM that is less than 5μm. In this study, an intelligent control technique based on Adaptive Neuro-Fuzzy Inference System (ANFIS) has been designed using MATLAB software. The ANFIS Controller has the advantage of solving non-linearities in the proposed wet scrubber system by manipulating the scrubbing liquid droplet size for the effective control of particulate matter that is less than 5μm. From the simulation results, the controller was able to set PM concentration below the set-point and provides smooth control response within short settling time. Hardware implementation of the ANFIS controller was performed using prototype wet scrubber system by considering Arduino Duemilanove microcontroller and MATLAB interface. The results show that the intelligent controller has achieved the desired objectives of controlling the PM concentration effectively by setting the value below the set point (20μg/m³) which is the allowable PM concentration standard recommended by World Health Organization. © 2014 IEEE.

Author keywords

ANFIS controller gas-particle separations hardware implementation wet scrubber system

Indexed keywords

Engineering controlled terms: Computer hardware Controllers Fuzzy inference Fuzzy systems Gas emissions Hardware Intelligent agents Intelligent control MATLAB Particle separators Scrubbers

Cited by 3 documents

Implementation of neuro-fuzzy system with modified high performance genetic algorithm on embedded systems

Real-time monitoring and reporting alarm system for pH measurement in wet scrubbers

Control of particulate matter (PM) emissions from industrial plant using anfis based controller

View all 3 citing documents
Adaptive neuro-fuzzy inference system
Gas-particle separation
Hardware implementations
Intelligent controllers
Nonlinear characteristics
Particulate matter emissions
Wet scrubbers
World Health Organization

Engineering main heading: Adaptive control systems

Source Type: Conference Proceeding
Original language: English

References (10)

Related documents

Identification and predictive control of spray tower system using artificial neural network and differential evolution algorithm

Adaptive neuro-fuzzy control of wet scrubbing process

Characteristic Parameters Mining of Gas-liquid Two-phase Flow Pattern Recognition of Wet Dust Scrubber
Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system
doi: 10.1016/j.seppur.2012.07.014
View at Publisher

2. Yetilmezsoy, K., Saral, A.
Stochastic modeling approaches based on neural network and linear-nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers
doi: 10.1007/s10666-006-9048-4
View at Publisher

Simulation of a spray scrubber performance with Eulerian/Lagrangian approach in the aerosol removing process
doi: 10.1016/j.jhazmat.2006.02.037
View at Publisher

4. Pieloth, D., Kohnen, B., Schaldach, G., Walzel, P.
CFD simulation of wet scrubbers part 1. Principles and implementation into commercial CFD software
doi: 10.1002/cite.201100157
View at Publisher

5. Krislinaraj, R., Sakhivel, M., Devadasan, S., Dinesh, M., Navaneethasanthakumar, S.
Investigation of sand filtration techniques to reduce secondary pollution in wet scrubber

6. Lei, K.S., Wan, F.
Applying ensemble learning techniques to ANFIS for air pollution index prediction in macau
Springer

7. Siddique, N., Adeli, H.
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing
ISBN: 978-111833784-4
doi: 10.1002/9781118534823
View at Publisher

© Copyright 2015 Elsevier B.V., All rights reserved.