5th International Conference on Computer & Communication Engineering

Autonomous Navigation of Mobile Robot Using Kinect Sensor

N.A. Zainuddin., Y.M. Mustafah, Y.A.M. Shawgi., N.K.A. M. Rashid

Department of Mechatronic Engineering,
International Islamic University Malaysia,
Kuala Lumpur, Malaysia
e-mail: yasir@iium.edu.my

Abstract—The problem of achieving real time process in depth
camera application, in particular when used for indoor mobile
robot localization and navigation is far from being solved. Thus,
this paper presents autonomous navigation of the mobile robot
by using Kinect sensor. By using Microsoft Kinect XBOX 360 as
the main sensor, the robot is expected to navigate and avoid
obstacles safely. By using depth data, 3D point clouds, filtering
and clustering process, the Kinect sensor is expected to be able to
differentiate the obstacles and the path in order to navigate
safely. Therefore, this research requirement to propose a creation
of low-cost autonomous mobile robot that can be navigated
safely.

Keywords-Kinect sensor, Mobile Robot, Navigation, OpenCV,
point cloud.

L INTRODUCTION

The autonomous mobile robot is widely used in many
applications. The sizes are different depending on the
application. It can be found in various scenes, either harmful
places or safe places, such as in store and warehouse, in
earthquake scenes or in the corridor and the library. In recent
years, the researchers seem has found interest in autonomous
mobile robot. Thus, allowing the development of mobile robot
into many different applications [1][2][3][4]. Despite the fact
that the technology of robotics evolved rapidly, most of the
existing vigilant robots are not fully automatic and unreliable
for surveillance purposes [1][2]. To make the situation worse,
they are not stable thus not available in the market.

Therefore, this paper proposes a creation of low-cost
autonomous mobile robot that can be navigated safely. Thus, it
can be used in many applications such as security robot,
surveillance of dangerous or inaccessible place to human and
executing a routine job like monitoring jobs that human find it
so tedious.There are four sections in this paper. The structure
of the paper is as follows. In section two, design and method of
the research are described. Meanwhile, in section three the
experimental results are presented. Finally, the conclusion is
drawn in section five.

II. METHODOLOGY

In this paper, an autonomoud navigation of mobile robot is
presented. Like any other robot, the design of the mobile robot
is divided into two part which are hardware and software. For
hardware, the mobile is designed to be able to carry a on-board
PC and have suitable shape to move freely. Plus, the design
must be able to carry another important components such as
sensor, encoder and microprocessor. For the sensor, in this
paper, we used Kinect sensor. Kinet sensor provides a low-cost
solution to autonomous robot. It successfully replaced the
expensive laser-based sensors that have been used so far.

978-1-4799-7635-5/14 $31.00 © 2014 IEEE
DOI 10.1109/ICCCE.2014.21

28

For software, the essential component is the control and the
navigation of the mobile robot [5]. Thus, the data is extracted
by the help of Microsoft Visual Studio 2010, OpenCV library,
OpenNI library and Point Cloud library for the control and
navigation algorithms. After the robot platform is built, the
algorithm implementation is done. The algorithm involves the
differentiation of path and obstacle in order to make sure the
mobile robot can navigate safely. The research ends with test
and evaluation of the system.

A. Robot Implementation

The mobile robot platform is built in this stage. The design
of the mobile robot consists of two decks, which are base deck
and upper deck. The upper deck is used to carry the on-board
PC, meanwhile the base deck is used to place the drive system,
sensors and electronics components. Figure 1 shows the design
of the mobile robot platform using Computer Aided Design
(CAD) software.

Laptop:
34x23x3
Upper
Deck Pillars:
R20 2.5x2.5x15
g Arduing
Deck:
R23

Figure 1. CAD design of the mobile robot platform.

The platform is designed to exhibit some important features
like mobility, autonomy, and interactivity. The base with the
largest diameter is set to be round. This is due to round-shaped
platform allows the robot to rotate on the spot without hitting
anything. The bottom deck is designed to be larger than upper
deck in order to allow enough space for the Arduino, Motor
driver, LIPO battery and sensors. As stability is also an
important measure, the deck thickness is also crucial, the base
must be stable when the robot turn, run or stop at full speed and
upper deck must able to hold the weight of the on-board PC.
Thus, acrylic board of 8 mm thickness was used for bottom
deck, while 5 mm thickness for the upper deck.

The platform is set to be about the same width as a human
so that it can navigate through doorways. This means that the
diameter of the decks must typically be less than 50-60 cm.
Most doors are 75 cm or greater in width, thus the radius for
bottom deck is 23 cm and the rectangle shape of the upper deck
is 20 cm x 20 cm. The size of the upper deck is finalized after

cprs™

Conference Publishing Services

considering the size of the on-board PC. The normal onboard
PC is measured in order to estimate the size of the upper deck.

B. Obstacle Detection Algorithm

As the main sensor used in this research is the Kinect
sensor, thus, the data from the Kinect sensor is used in the
obstacle detection algorithm. The obstacle detection algorithm
starts with the data acquisition by the live video from the
Kinect sensor camera. Then, the data is converted in the depth
data map and further, is converted into 3D point clouds. The
3D point cloud data carry the X, Y, Z coordinates data of the
environment in order to reduce the processing the time, the
point clouds are reduced by using the voxel Filtering. At this
stage, the mobile robot still does not recognize the wall, the
obstacles and the floor, thus the clustering process is done in
order to organize the point clouds to understandable parameters
of the mobile robot. After the clustering, the mobile robot is
expected to recognize the obstacles and able to avoid them.

C. Navigation Algorithm

After the obstacles are detected, now, the mobile robot
needs to avoid the obstacles and navigate to the free path. The
last stage in the obstacle detection algorithm is the clustering.
The data from the clusters are used as the inputs of the
navigation system. If the current coordinate system is equal to
the target (final location) coordinate, the mobile robot will
rotate 90 degree and then suspend the program. However, if the
target is not reached, the obstacles in the environment are
scanned. If there are any close obstacles, the motor will avoid
the obstacle and navigate in the free path. If there are no
obstacles (free path), the motor is set to move in straight
forward direction. The navigation algorithm is illustrated in the
flowchart in Figure 2.

Obstacle
Detection

Coordinate
= Target

Obstacles

v
Motor
straight

Figure 2. Navigation algorithm

29

1.

As overall the system involving many stages, the outputs of
each stage are discussed below. It starts with mobile robot
construction and then the algorithm implementation by using
Microsoft Visual Studio 2010.

A. Integration of the Robot

The main sensor used in this research is Kinect sensor. The
Kinect sensor is designed to be mounted on the robot as shown
in Figure 3.The Kinect sensor is programmed by using the
Microsoft VisualStudio, OpenNI library and point cloud
library. The command is sent to the microcontroller and motor
driver board. The microcontroller will control the movement of
the feedback from the robot will be sent back to the
microcontroller and then the feedback coordinates will send
back to the software algorithm.

RESULTS AND DISCUSSIONS

! s

Send Back
Robot
coordinate
Sead
command

Send
i Feedback

Control Robot
Motion

Microsaft*

Visual Studio
OpenTiIl.

poINt; Ubrary

Figure 3. System setup

B. Capture video

By definition, video is a composition of many still images
that produce a motion like image. The code starts by creating a
Mat object that named as frame by executing the command
cv::Mat frame. The command cv::Video Capture cap () is used
to activate the default camera. After that, the code checking
whether the camera is valid or not by executing if
('cap.isOpened()) {printf("No Camera Detected")}, if the
camera is not available, the message “No Camera Detected”
will be appeared and on contrast if the camera is detected, a
window named Webcam Video is created and the camera will
start to capture the video by for(;;){cap>>frame;} and display
it, cv:imshow("Webcam Video",frame). The waitKey()
function in here serves the same role as before. So, Fig. 5
shows the output.

C. Depth Data

The bright color indicates that the object is near to the
camera. However, being too near will cause the object not
detected and it is indicated as black in color (Figure 4). The
farthest object will be in dark color. The output is an
accumulative histogram of the frequency of occurrence of each
depth value. The histogram is built based on the depth values
of each pixel. The pointer, *pDepth is used in order to access
all the pixels in the updated image captured by Kinect sensor.

Figure 4. Depth map by kinect

D. Disparity Map

The basic way of writing disparity map is by using
StereoBM and StereoBGM function. However, these functions
require two input images. Thus, it is not suitable for Kinect
sensor based disparity map. By using Kinect sensor, the
algorithm of the code has started with the depth map
acquisition. From the depth map, the disparity map is
produced. OpenNI library is used for these purposes. The depth
values produced is in mm. Note that all the objects,
disparity_map, depth_map are declared as a Mat object so that
they can be called out in the imshow () for the display
purposes. After the program is executed, the output is as Figure
5.

T coloed dispaity map

1 crgind depary e

Figure 5.

Disparity map by kinect

E. Point cloud

The depth data from the frames (video) captured by Kinect
sensor is used to reconstruct the 3D point cloud. From the
Kinect depth data, this point cloud class needs the width and
height data. The width will specify the total number of points,
pi, in the unorganized point cloud set, P. The width also be
used in specifying the width (row) of the organized point cloud
dataset. Meanwhile, for height, it is used to specify the height
of the organized point cloud dataset and to check whether the
dataset is organized or not by setting the unorganized dataset to

30

one. An array called PointT also created in order to store all the
points.

F. Filtering using Voxel Grid

Through In terms of filtering, the voxel filtering is used to
reduce the unwanted 3D point clouds. It is a built-in function in
Point Cloud library. The VoxelGrid() function will produce a
3D voxel grid over the input point cloud data. In each of the
voxels, or the 3D box, all of the point clouds will be filtered or
downsampled with their centroid. In simpler words, an average
with respect to the centroid is done. It starts with the reading of
the point cloud data (.pcd) from the depth data of the Kinect
sensor. When the input data is triggered, the computation is
done and the output will be stored in the cloud filtered
variable.

G. Clustering

As the data from the point cloud is unorganized and not
recognizable by the mobile robot, a clustering algorithm is
needed. One of the clustering methods that can be used is
Euclidean. The output points of the filtering will be the input in
this clustering. The most important thing in this algorithm is
creating the KdTree. KdTree is used in as the searching method
in this algorithm. A vector of point indices, PointIndices is also
needed to be created. The PointIndices is the vector that
contains the actual index information. This vector will save the
indices information of the detected cluster. As the point cloud
is in 3D, PointXYZ is used. Note that there are values are
needed to be set in this code, which are the tolerance, minimum
cluster size, and the maximum cluster size.

IV. CONCLUSIONS

This paper focuses on autonomous navigation using Kinect
sensor. Kinect sensor is chosen based on cost, effectiveness
and real time processing. This paper sets out to develop an
autonomous mobile robot navigation using Kinect sensor. At
the same time, this research is carried out to explore existing
algorithm used in the development of navigation. In addition,
this research also investigates how to navigate the mobile robot
successfully in an indoor environment as the biggest challenge
of the indoor environment is the quality of images captured as
the lighting condition is quite unsatisfactory. The software
implementation comprises of the obstacle detection algorithm
and navigation algorithm. As for now, the quality of 3D point
cloud produced is quite unsatisfactory. Thus, the future work
may include the optimization and noise reduction. To conclude,
the current technology used in autonomous navigation is
vision-based sensor. However, the high cost of the vision-based
sensor always becomes the limiting factor. Therefore, the
Kinect sensor provides the solution to these problems.

REFERENCES

D.S. Correa, D.F. Sciotti and M.G. Prado. Mobile Robots Navigation in
Indoor Environments Using Kinect Sensor. Second Brazilian
Conference on Critical Embedded System, Carlos, Brazil: IEEE. 2012,
pp. 36-41.

P. Benavidez and M. Jamshidi. Mobile Robot Navigation and Target
Tracking System. 6th International Conference on System Engineering,
New Mexico , 2011, pp. 299-304.

J. Cunha, E. Pedrosa, C. Cruz and N.Lau. Using a Depth Camera for
Indoor Robot Localization and Navigation, 2011.

(1]

[2]

3]

(4]

(3]

(6]

L. Somlyai and Z. Vamossy. Map Building with RGB-D Camera for
Mobile Robot. 16th International Conference on Intelligent Engineering
Systems, Lisbon, Portugal, 2012, pp. 489-493.

D.S. Correa, D.F Sciotti and M.G Prado. Mobile Robots Navigation in
Indoor Environments Using Kinect Sensor. Second Brazilian
Conference on Critical Embedded System Carlos, Brazil: IEEE, 2012,
pp. 36-41.

R. Palaniappan, P. Mirowski, T.K. Ho, H. Steck, P. Whiting and M.
MacDonald. Autonomous RF Surveying Robot for Indoor Localization
and Tracking. International Conference on Indoor Positioning and
Indoor Navigation. Guimarales, Portugal, 2011.

31

(7]

(8]
(9]

(10]

M. Castelnovi, M. Miozzo, A. Scalzo, M. Piaggio, A. Sgorbissa, and R.
Zaccaria. Surveillance Robotics: analysing scenes by colours analysis
and clustering, 2011.

O. Hachour. Path Planning of Autonomous Mobile Robot. VOL. 2(4),
2008.

P. Lester. A* Pathfinding for Beginners. Retrieved from:
http://www.policyalmanac.org/games/aStarTutorial.htm/, 2005.

K. Parnell and R. Bryner. Comparing and Contrasting FPGA and
Microprocessor ~ System Design and Development 2004.

