“Eco-Friendly Pharmaceuticals for a Greener Future”

1st International Conference on Industrial Pharmacy

16-17th August 2014

Swiss Garden Resort and Spa, Kuantan, Pahang

Kulliyyah of Pharmacy, International Islamic University Malaysia
Contents
ORAL PRESENTATION

COMPATIBILITY CHARACTERIZATION OF GENTAMICIN-NIGELLA SATIVA FUSION AS A FUTURE 'GREENER' PHARMACEUTICAL INTENDED FOR ORTHOPAEDIC INFECTION

EFFECT OF POLYMERS AND STARCH ON PHYSICAL PROPERTIES OF LYOPHILIZED ORALLY DISINTEGRATING TABLETS

GREEN APPROACH TOWARDS BIOENHANCED CURCUMIN: PROCESS ANALYTICAL TECHNOLOGY (PAT) ENABLED SCALE UP STUDIES OF CURCUMIN SOLID SOLUTION USING HOT MELT EXTRUSION

ANTIBIOTICS PSEUDOPOLYMORPHISM STUDY BY PXRD AND THERMAL ANALYSIS

FORMULATION AND EX-VIVO EVALUATION OF TRANSDERMAL PATCHES AND STUDY ON PENETRATION ENHANCEMENT EFFECT OF BUCHANANIA LANZAN (SPRENG) SEED OIL

ADVANCES IN PROCESS TECHNOLOGY FOR RAPID PRODUCTION OF PHARMACEUTICAL NANOSUSPENSIONS

A NOVEL METHOD FOR TASTE MASKING OF IBUPROFEN PARTICLES USING NANOPARTICLES OF PHARMACOLOGICALLY INERT MATERIALS

UNIFORM PHARMACEUTICAL MICROPARTICLES WITH WELL-DEFINED PROPERTIES PRODUCED BY A NOVEL MICROFLUIDIC JET SPRAY DRYER

NOVEL ORAL SNEDDS OF ARTEMETHER: THE FUTURE CLINICAL OUTCOME

APPLICATION OF HIBISCUS ESCULENTUS (OKRA) GUM IN SUSTAINED RELEASE DOSAGE FORM OF PROPRANOLOL HYDROCHLORIDE

FUTURE GREENER BIOPHARMACEUTICAL (NBP) TO CENTRAL NERVOUS SYSTEM (CNS): EFFECT OF POLY(D,L-LACTIC-CO-GLYCOLIC ACID) AND CHITOSAN MOLECULAR WEIGHT ON FORMULATION.

FORMULATION DEVELOPMENT, EVALUATION AND ANTI-INFLAMMATORY EFFECTS OF KETOPROFEN CREAM ON RHEUMATOID ARTHRITIS PATIENTS

GREEN TECHNOLOGY EXTRACTION OF BIOACTIVE COMPOUNDS FROM ZINGIBERACEAE PLANTS USING SFE

EXTRACTION SELECTIVITY-A NEW TOOL FOR GREEN PROCESS ANALYSIS AND DESIGN OF SOLID-LIQUID EXTRACTOR
GREEN PROCESS DEVELOPMENT OF HERBAL AND/UPSTREAM PHYTOCHEMICAL PRODUCTS IN DRUG DISCOVERY AND DEVELOPMENT 32

1H NMR AND UV/ VISIBLE SPECTROPHOTOMETERIC STUDY OF THE ARSENIC COMPOUNDS WITH GLUTATHIONE IN BLOOD AND AQUEOUS SOLUTION A TOXICOLOGICAL AND PHARMACOLOGICAL PERSPECTIVE. 37

STRUCTURAL MODIFICATION OF A NATURAL POLYMER CASSIA TORA BY MICROWAVE ASSISTED GRAFTING TECHNIQUE INTENDED TO USE SUSTAINED RELEASE MATRIX TABLET FORMULATION 38

DOCKING STUDIES OF AEGLE MARMELOS PLANT COMPOUNDS AGAINST GASTRIC CANCER CELL SURFACE RECEPTOR PROTEINS – CD340 AND FGFR2B 40

DESIGN AND SYNTHESIS OF NOVEL FLAVONOIDS AS GABAA RECEPTOR LIGANDS 41

PREPARATION, CHARACTERIZATION AND REDUCTION OF BURST RELEASE OF BSA FROM BIODEGRADABLE PLGA MICROSPHERES 42

TURNING WEEDS INTO DRUGS: THE PROSPECT OF MIMOSA PUDICA LINN. ON DIABETES MELLITUS, IN VITRO 45

EFFECTS OF BACCAUREA ANGULATA FRUIT JUICE ON PLASMA LDL AND HDL CHOLESTEROL AND OXIDIZED LDL CONCENTRATIONS IN NORMO- AND HYPERCHOLESTEROLEMIC RABBITS 47

ISOLATION OF A PROMISING ANTIDIABETIC COMPOUND FROM THE LEAVES OF TETRACERA INDICA MERR., AND IN VIVO TOXICOLOGICAL STUDIES IN DIABETES INDUCED EXPERIMENTAL ANIMALS 48

KNOWLEDGE PORTAL AND MOBILE APPLICATION FOR ETHNOBOTANICAL AND PHYTOCHEMICAL INFORMATION OF ASIA 51

CYTOTOXIC ACTIVITY OF LUVUNGA SCANDENS PLANT ON HUMAN CANCER CELL LINES 53

PERSONAL DATA PROTECTION IN CLINICAL TRIAL IN MALAYSIA: A QUEST FOR LEGAL AND REGULATORY FRAMEWORK 55

DETECTING AND MEASURING EURYCOMANONE LEVELS IN VARIOUS TONGKAT ALI PRODUCTS 56

REGULATORY CHALLENGES IN THE DEVELOPMENT OF PALM OIL-BASED INJECTIONS FOR PHARMACEUTICAL USE 57

POTENTIAL HEALTH BENEFITS OF TRADITIONAL HERBAL FORMULA, DIABECINE™ 58
MOLECULAR MECHANISMS OF ANTI-OSTEOPOROTIC AND ANTIOXIDANT EFFECTS OF VIRGIN COCONUT OIL IN OVARIECTOMIZED RATS

EFFECTS OF COSMOS CAUDATUS ON BONE FRACTURE HEALING IN OVARIECTOMISED RATS: MICRO-CT ANALYSIS

PROMOTION OF HUMORAL IMMUNITY BY AN AYURVEDIC HERBAL PREPARATION, SARIBADYARISTA

COMPARATIVE NEUROPROTECTIVE ACTIVITY OF BENINCASA HISPIDA SEEDS AND MESOCARP AGAINST NEURODEGENERATIVE DISORDER, DEMENTIA

PROPERTIES IMPORTANT FOR THE GREEN PROCESSING OF BIOMATERIAL-RELATED COMPOUNDS WITH SUPERCRITICAL CARBON DIOXIDE

ENVIRONMENTAL IMPACT ASSESSMENT FROM ENERGY CONSUMPTION IN EARLY PROCESS DESIGN OF A LARGE-SCALE MONOCLONAL ANTIBODY PRODUCTION

SEPARATION SPHERICAL ORGANIC MACROMOLECULE COMPOUND BY UF/MF MEMBRANE

AN ATTEMPT TO ISOLATE INDUSTRIALLY IMPORTANT MICROORGANISM FROM DIVERSE SAMPLES COLLECTED FROM SEMELING, KEDAH, MALAYSIA

CHALLENGES AND OPPORTUNITIES IN THE MANAGEMENT OF HOUSEHOLD WASTE MEDICINES FOR THE PHARMACEUTICAL COMPANIES IN BRAZIL

POSTER PRESENTATION

FORMULATION AND IN-VITRO CHARACTERIZATION OF FLOATING SUSTAINED-RELEASE TABLETS OF METFORMIN HYDROCHLORIDE

FORMULATION AND OPTIMIZATION OF RALOXIFENE LOADED NANOTRANSFERSOMES BY RESPONSE SURFACE METHODOLOGY FOR TRANSDERMAL DRUG DELIVERY

INFLUENCE OF CELLULOSE POLYMER TYPES ON IN VITRO RELEASE OF DOMPERIDONE SR TABLETS

BUCHANANIA LANZAN SPRENG SEEDS MUCILAGE: IN VITRO-IN VIVO MUCOADHESIVE STRENGTH ASSESSMENT

EFFECTIVE AND CONTROLLED TRANSDERMAL DELIVERY OF LERCANIDIPINE HYDROCHLORIDE: SYSTEM DESIGN AND CHARACTERIZATION

FORMULATION AND STABILITY TESTING OF GENTAMICIN-NIGELLA SATIVA EMULSIONS FOR OSTEO-HEALING APPLICATION
OPTIMIZATION OF PITAYA SEED EXTRACTS- BASED NANOCOSMETICEUTICAL FORMULATION USING RESPONSE SURFACE METHODOLOGY (RSM)

REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC DETERMINATION OF MEFENAMIC ACID IN HUMAN PLASMA USING LIQUID-LIQUID EXTRACTION TECHNIQUE

PULSATILE DRUG DELIVERY SYSTEM OF IBUPROFEN AND FAMOTIDINE

STOMACH SPECIFIC DELIVERY OF ANDROGRAPHOLIDE FROM FLOATING IN SITU GELLING SYSTEM

NEW GAHARU AROMATIC PRODUCTS FROM AGARWOOD OLEORESIN AND SOLID RESIN

DEVELOPMENT OF HALAL MODIFIED RELEASE GLICLAZIDE 60 MG TABLETS BY CENTRAL COMPOSITE DESIGN AND PRODUCTION BY DIRECT COMPRESSION

ANTIOXIDANT ACTIVITY STUDIES OF NOVEL SCHIFF AND MANNICH BASES

SOLUBILITY PREDICTION AND ISOTHERMAL ANTISOLVENT CRYSTALLIZATION MODELING AND OPTIMIZATION

A GREEN APPROACH TO INVESTIGATE THE EFFECT OF SOLVENTS ON THE CRYSTALLIZATION OF MEFENAMIC ACID POLYMORPHS

ASSESSMENT OF THE ANTIBACTERIAL ACTIVITY OF CRUDE ALKALOIDAL EXTRACTED FROM SEEDS AND LEAVES OF SWIETENIA MACROPHYLLA KING.

CHANGES IN THE ANTIOXIDANT ENZYMES AND INFLAMMATORY MARKERS FOLLOWING ADMINISTRATION OF BELIMBING DAYAK (BACCAUREA ANGULATA) FRUIT JUICE ON EXPERIMENTAL RABBITS FED WITH CHOLESTEROL DIET.

GC – MS ANALYSIS AND ANTIBACTERIAL ACTIVITY OF ESSENTIAL OIL FROM ORTHOSIPHON THYMIFLORUS ROTH.

EVALUATION OF PELTOPHORUM ROXBURGHII FOR ITS HEMATOLOGICAL PARAMETERS AND ERYTHROCYTE SEDIMENTATION

BIOMONITORING METALS IN LEECHES (HIRUDINARIA MANILLENIS) – A STEP TOWARDS ITS IMMEDIATE APPLICATION IN TRADITIONAL MEDICAL TREATMENTS

IN VITRO ANTIMICROBIAL EFFECT OF GENTAMICIN-NIGELLA SATIVA FUSION EMULSION AGAINST BIOFILM PRODUCING STRAIN S. AUREUS, P. AERUGINOSA AND S. EPIDERMIDIS
CYTOTOXIC ACTIVITY OF FLOWERING AND NON-FLOWERING STAGES OF MELASTOMA DECEMFIDUM ROXB. ON CANCER CELL LINES 114

INVESTIGATION OF APOPTOTIC EFFECTS OF DICHLOROMETHANE EXTRACT OF AGLAIA EXIMA LEAVES ON HUMAN CANCER CELL LINES 116

CYTOTOXIC ACTIVITY OF JUSTICIA GENDARUSSA LEAF EXTRACTS ON MCF-7 BREAST CANCER CELL LINE 117

EFFECTS OF GARCINIA MANGOSTANA ON ADIPOCYTE DIFFERENTIATION AND GLUCOSE UPTAKE REGULATION IN 3T3-L1 CELLS 119

PREVENTIVE ANTIOXIDANT EFFECT OF TOCOTRIENOL ON STRESS-INDUCED GASTRIC MUCOSAL LESIONS AND ITS RELATION TO INDUCIBLE NITRIC OXIDE SYNTHASE EXPRESSION 120

SOLUBILITY PREDICTION OF L-ASCORBIC ACID IN SOLVENTS USING NON-EMPIRICAL METHOD 121

SKIN PENETRATION- ENHANCING EFFECT OF NATURAL OILS: IN VITRO STUDY 123

HPLC ANALYSIS AND BIOKINETIC STUDIES OF PYRAZINAMIDE IN FEMALE VOLUNTEERS 124

AN OBSERVATIONAL STUDY COMPARING EFFICACY AND SAFETY OF BASAL BOLUS INSULIN REGIMEN AND TWICE DAILY PREMIXED INSULIN REGIMEN AMONG DIABETES MELLITUS TYPE 2 PATIENTS 125

GENERAL PUBLIC KNOWLEDGE AND PERCEPTION TOWARDS HERBAL BEVERAGES IN KUANTAN, MALAYSIA 126
ISOLATION OF A PROMISING ANTIDIABETIC COMPOUND FROM THE LEAVES OF TETRACERA INDICA MERR., AND IN VIVO TOXICOLOGICAL STUDIES IN DIABETES INDUCED EXPERIMENTAL ANIMALS

Qamar Uddin Ahmed¹, Mehnaz Afrin², Siti Zaiton Mat Soad¹, Wan Azizi Sulaiman², Muhammad Taher³, Jalifah Latip⁴, Anil Kumar Saxena⁵

¹Department of Pharmaceutical Chemistry, ²Department of Basic Medical Sciences, ³Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, ⁴School of Chemical Sciences and Food Technology, Kulliyyah of Science and Technology, University Kebangsaan Malaysia, ⁵School of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia

Email: ¹quahmed@iium.edu.my, ²aafrin_mehnaz@yahoo.com

Diabetes mellitus is a chronic disorder together with other metabolic abnormalities, usually developed due to insulin resistance or deficiency as well as increased hepatic glucose output [1]. The prevalence of diabetes mellitus among Malaysians adults more than 30 years of age has escalated by more than two fold over a 20-year period [2].

On the other hand, many plants have been used for the treatment of diabetes mellitus in modern system of medicine and in other ancient systems of the world. As a result, plants are now-a-days regarded as promising and significantly attractive natural sources to enrich the current therapy options against diabetes. However, so far, not many active agents have been successfully isolated and extensively studied [3]. Hence, we prompted to evaluate the antidiabetic potential of a flavonoid (5,7-dihydroxy-8-methoxyflavone [4], Figure 1) isolated from the leaves of Tetracera indica Merr., a Malaysian medicinal plant which is traditionally used to treat diabetes in Malaysia.

The study was carried out using Sprague-Dawley rats (diabetic as well as normal) to evaluate antidiabetic potential of 5,7-dihydroxy-8-methoxyflavone at three different concentrations, viz. 1 mg/kg b.w., 5 mg/kg b.w. and 25 mg/kg b.w. At 5 mg/kg b.w. and 25 mg/kg b.w., it was found to exhibit significant anti-hyperglycemic activity in alloxan induced diabetic rats and in normal rats, no hypoglycemic activity was observed at all concentrations, when compared with +ve and –ve controlled groups. The antidiabetic activity was found to be comparable with glibenclamide (GLBC), a known oral hypoglycemic agent (50 mg/kg b.w.) (Table 1). The LD₅₀ of 5,7-dihydroxy-8-methoxyflavone was found to be more than 500 mg/kg b.w. and no lethal toxicity was observed within this range. Three weeks later, the in-vivo study, histopathology of kidney and pancreas from alloxan-induced rats demonstrated the clinical manifestation of diabetic affected kidney and pancreas (Figures 2 & 3). It is concluded that the 5,7-dihydroxy-8-methoxyflavone from the leaves of T. indica is a safe and promising antidiabetic agent that could prove useful in the management of diabetes and might also provide lead for the synthesis of a new class of safe antidiabetic drugs.

Keywords: 5,7-dihydroxy-8-methoxyflavone, Tetracera indica, antidiabetic agent
Fig. 1: Structure of isolated flavonoid (5,7-dihydroxy-8-methoxyflavone) from the leaves of *Tetracera indica* Merr.

Table 1. Effect of different doses of 5,7-dihydroxy-8-methoxyflavone on blood glucose levels (mmol/L) in normal and diabetic rats at different intervals (days). The values represent the standard error of mean (S.E.M.). *indicates a significant change in blood glucose level (p<0.005).

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>DAY 1</th>
<th>DAY 3</th>
<th>DAY 5</th>
<th>DAY 7</th>
<th>DAY 9</th>
<th>DAY 11</th>
<th>DAY 13</th>
<th>DAY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Healthy</td>
<td>6.2±0.6</td>
<td>6.7±0.7</td>
<td>6.1±0.3</td>
<td>5.8±0.4</td>
<td>6.1±0.5</td>
<td>6.0±0.2</td>
<td>6.5±0.4</td>
<td>5.7±0.6</td>
</tr>
<tr>
<td>Normal/Mflavone 5mg/kg b.w.</td>
<td>5.4±0.5</td>
<td>6.1±0.9</td>
<td>5.7±0.3</td>
<td>6.5±0.9</td>
<td>6.4±0.7</td>
<td>5.6±0.4</td>
<td>5.9±0.4</td>
<td>5.9±0.4</td>
</tr>
<tr>
<td>Diabetic/Mflavone 5mg/kg b.w.</td>
<td>32.8±2.4 *</td>
<td>30.4±2.2 *</td>
<td>27.5±2.0 *</td>
<td>26.9±2.2 *</td>
<td>24.7±2.5 *</td>
<td>22.6±1.8 *</td>
<td>20.1±2.8 *</td>
<td>18.6±2.7 *</td>
</tr>
<tr>
<td>Diabetic/GLBC 50mg/kg b.w.</td>
<td>30.9±1.8 *</td>
<td>29.2±1.5 *</td>
<td>25.7±1.3 *</td>
<td>22.7±1.2 *</td>
<td>20.0±1.7 *</td>
<td>17.0±2.0 *</td>
<td>13.9±1.9 *</td>
<td>10.6±1.7 *</td>
</tr>
<tr>
<td>Normal/Mflavone 25mg/kg b.w.</td>
<td>6.7±0.3</td>
<td>6.4±0.2</td>
<td>6.0±0.4</td>
<td>5.9±0.4</td>
<td>6.2±0.6</td>
<td>5.8±0.6</td>
<td>5.3±0.4</td>
<td>5.1±0.2</td>
</tr>
<tr>
<td>Diabetic/Mflavone 25mg/kg b.w.</td>
<td>30.5±3.7 *</td>
<td>25.9±7.8 *</td>
<td>22.4±7.8 *</td>
<td>19.1±7.4 *</td>
<td>16.7±7.6</td>
<td>14.6±6.9 *</td>
<td>12.9±6.4 *</td>
<td>9.9±5.8 *</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>30.9±2.5</td>
<td>29.2±4.7</td>
<td>29.4±3.5</td>
<td>27.5±3.1</td>
<td>26.1±2.2</td>
<td>25.4±1.7</td>
<td>24.7±1.6</td>
<td>25.6±1.7</td>
</tr>
<tr>
<td>Diabetic/Mflavone 1mg/kg b.w.</td>
<td>32.5±3.1 *</td>
<td>30.9±5.5 *</td>
<td>30.3±5.3 *</td>
<td>29.0±4.9 *</td>
<td>28.4±4.9 *</td>
<td>27.7±4.9 *</td>
<td>26.9±4.7 *</td>
<td>26.1±4.7 *</td>
</tr>
</tbody>
</table>

Fig. 1: Diabetic group of rats treated with high dose of Mflavone (25 mg/kg b.w.) showing mild segmental mesangial matrix expansion from the glomeruli with partial hyalinization of glomerulus (kidney section)

Fig. 2: Diabetic group of rats treated with high dose of Mflavone (25 mg/kg). After 3 weeks of study, the pancreas tissue- the lighter staining tissue within the lobules represent the endocrine component of the pancreas, the pancreatic Islets of Langerhans and restoration of normal cellular population size of islets of Langerhans and less damage to islets
Currently, phytochemical databases that store information on ethnobotanical plants, compounds and its uses in Asia are limited and do not comprehensively cover the extent of digitally available information for specific species. Asia and its rich ethnobotanical medicine and associated heritage encompass a multitude of cultures, ranging from Chinese and Ayurvedic to Indo-Malay traditional medicine. Although there are an abundance of data and information, they are scattered with only a few specific databases that cater for ethnobiology and vast information available in textual format due to its historical nature. Therefore, an establishment of a comprehensive ethnobotanical database will facilitate information gathering and preserve the biocultural knowledge that is facing extinction due to habitat loss and modern development. This database Phyknome will enable researchers and public to seek and identify ethnobotanical information based on a species scientific name, descriptions and phytochemical information. Up until now, Phyknome hosts more than 22,000 plant species with 14 Divisions, 18 Class, 745 Families and more than 28,000 Genus. Plant scientific names were cross-checked with International Plant Index (IPNI) for verification. It is constructed using a digitization pipeline that allow high throughput digitization of archival data, an automated data miner to mine for pharmaceutical compounds information and an online database to integrated these information. Active compounds structure and publication information is mined from PubChem and PubMed database respectively. The pipeline is integrated with android smartphone application that can be used to report occurrences and obtain ethnobotanical data on-the-go. The main functions include an automated taxonomy, search query based on chemical compound, geolocation and bibliography. We believe that Phyknome will contribute to the digital knowledge ecosystem to elevate access and provide tools for ethnobotanical research and contributes to the management, assessment and stewardship of biodiversity. The database is available at http://mapping.fbb.utm.my/phyknome/.

Keywords: Ethnobotany, phytochemicals, databases
Fig. 1: Phyknome homepage; contain featured researchers, featured plant species, plant species counter, login page

Fig. 2: Example species page; shows accepted names (based on International Plant Index (IPNI)), synonym(s), vernacular name(s), Chinese name, taxonomic classifications

Fig. 3: Example data information; plant usage, parts used, precaution, other uses, active compound, chemical structure from PubChem, retrieved PubMed publications, other references resource

Fig. 4: Geographical information; based on GPS coordinate and retrieved from GBIF API species distribution