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ABSTRACT.  

A hash function usually has two main components: a 

compression function or permutation function and mode of 

operation. In this paper, we propose a new concrete novel design 

of a permutation based hash functions called Gear. It is a hash 

function based on block cipher in Davies-Meyer mode.  It uses 

the patched version of Merkle-Damgård, i.e. the wide pipe 

construction as its mode of operation. Thus, the intermediate 

chaining value has at least twice larger length than the output 

hash. Also, we analyze Gear and prove it is hard to attack it with 

complexities significantly less than brute force and it resists all 

the generic attacks. And the permutations functions used in Gear 
are inspired from the SHA-3 finalist Grøstl hash function which 

is originally inspired from Rijndael design (AES). As a 

consequence there is a very strong confusion and diffusion in 

Gear.  

Categories and Subject Descriptors 
K.6.5 [MANAGEMENT OF COMPUTING AND 

INFORMATION SYSTEMS]: Security and Protection – 

Authentication, Insurance.  

General Terms 
Security 

Keywords: WP - permutation – block cipher – AES  

1. INTRODUCTION  
Cryptographic hash functions have indeed proved to be the 

workhorses for modern cryptographic hash functions. Another 

name given to cryptographic hash functions is “Swiss knife 

army” because it can serve many different purposes such as 

digital signatures, conventional message authentication to secure 

passwords storage or forensics data identification. 

Cryptographic hash functions take an unfixed size of input and 

produce a fixed size of an output. 
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 A hash function usually built from two main components: (1) a 

basic primitive compression function C and (2) an iterative 

mode of operation H, where the symbol HC denotes the hash 

function HC based on the compression function C. Most hash 

functions in use today are so-called iterated hash functions, i.e. 

Merkle-Damgård (MD), based on iterating a compression 

function. Examples of iterated hash functions are MD4, MD5, 

SHA and RIPEMD-160. For a cryptographic hash function HC, 

if the compression function C is resistant to the following 

attacks, then the hash function considered secure:  

• Preimage: given y = H(x), find x
’
 such that H(x

’

) = y, 

• 2
nd

 preimage: given an x and y=H(x) find x
’
 ≠ x such 

that H(x
’

) = y, 

• Collision: find x and x
’
 such that x

’
 ≠ x and H(x) =H(x

’

). 

 
Recently, several collisions were announced which decreased 

the security of some of the existing hash functions. Particularly, 

collisions were announced in SHA-0, MD4, MD5, HAVAL-

128, and RIPEMD. French researcher Antoine Joux et al. [17] 

presented the collision in SHA-0, and a group of collisions 

against MD4, MD5, HAVAL- 128, and RIPEMD were found by 

the Chinese researcher Xiaoyun Wang with co-authors Dengguo 

Feng, Lai, and Hongbo Yu [30]. After that, in February 2005, 

the same Xiaoyun Wang, Lisa Yiqun Yin, and Hongbo Yu 

found collisions in SHA-1 using 269 hash computations [30]. 

Several strategies were developed to thwart these attacks. Stefan 

lucks et al. [23] introduced the Wide Pipe (WP) hash 

construction as an intermediate version of Merkle-Damgård to 

improve the structural weaknesses of Merkle-Damgård design. 

The process is similar to Merkle-Damgård algorithm steps 

except of having a larger internal state size, which means the 

final hash digest is smaller than the internal state size of bit 

length. For example, the final compression function compresses 

the internal state length (for ex, 2n-bits) to output a hash digest 

of n-bit. This simply can be achieved by discarding the last half 

of 2n-bit output. WP is used in this paper to construct Gear hash 

function. It is used as an operation of mode for Gear. Mridul 

Nandi and Souradyauti Paul et al. [31] proposed the fast wide 

pipe (FWP) construction to overcome these attacks. It is twice 

faster than the wide pipe construction. HAsh Iterated 

FrAmework (HAIFA) is also a patched version Merkle-

Damgård construction [32]. HAIFA design solves many of the 

internal collision problems associated with the classic MD 



 

construction design by adding a fixed (optional) salt of s-bits 

along with a (mandatory) counter Ci of t-bits to every message 

block in the iteration i of the hash function. Wide-pipe and 

HAIFA are very similar designs. Where, sponge construction is 

an iterative construction designed by Guido Bertoni, Joan 

Daemen, Micheal Peeter and Gilles Van Assche to replace 

Merkle-Damgård construction [2]. It is a construction that maps 

a variable length input to a variable length output. Keccak 

(SHA-3 winner) hash function uses sponge construction. In the 

next section, we demonstrate our new proposal Gear hash 

function in more details.  

2. OUR PROPOSAL 
We propose a new hash function called Gear that supports 256-

512 bits digests. The basic building block of our hash is a block 

cipher. By applying standard design approaches next we create a 

compression function (based on the cipher), and finally a hash 

function. We use the following design techniques: 

 The block cipher applies the wide trail strategy. 

 A compression function based on the block cipher in 

Davies-Meyer mode. 

 A hash built upon an iterative compression function with 

the Merkle-Damgård construction. 

 A wide pipe construction, i.e. the intermediate chaining 

value has at least twice larger length than the output hash. 

3. Design Goals  
The main design goal of any modern hash function is the 

security of the construction. In the last several years, the notion 

of security has expanded to include not only the basic 

requirements on collisions and second preimage resistance, but 

also a wide variety of distinguishers. In fact, non-formally a 

hash function is supposed to behave as a random oracle. 

Although in this model, trivial distinguishers do exist for every 

hash function, the designers aim to construct hash function that 

will be resistant against all possible non-trivial distinguishers, 

i.e. the hash does not exhibit any structural distinguishers, and, 

in a line of notation from the Sponge design [2], it is a hermetic 

design. 

We aim to achieve this high security requirement with our 

proposal as well. More precisely, we would like to achieve the 

standard security margin against the following attacks and 

structural distinguishers: 

 No collisions can be found in n-bit Gear with significantly 

less than 2n 

hash function invocations 

 No (second) preimage can be found in n-bit Gear with 

significantly less 

then 2n invocations 

 No non-trivial structural distinguishers can be found for 

Gear with a complexity significantly lower than the 

complexity required to find (or confirm) such property in a 

secure hash function (such as SHA-2, SHA-3, etc.) Here, 

we would like to point out that the deviation “significantly 

lower” from “lower” is introduced to annulate the analysis 

based on the recently discovered bicliques[7] – the latest 

results suggest that such analytical results are most likely 

applicable to all cryptographic primitives, thus one cannot 

expect the achieve the ideal security level. On the other 

hand, the complexity of the attacks not based on 

granulation of the compression function (i.e. all other 

analysis except bicliques), should always exceed our 

claimed security bound. 

4. DESCRIPTION OF Gear 
Our proposal Gear is a wide pipe hash function with an internal 

state of 1024 bits. It supports digests of 1 to 512 bits. For 

security reasons, we suggest a minimal output of 256 bits – 

further we describe the two main versions Gear - 256 and Gear -
512, with an output length of 256 and 512 bits, respectively. We 

emphasize that these two versions, as well as all the possible 

versions with a hash output between 256 and 512 bits, are based 

on the same primitive, and differ only in the number of bits that 

are truncated at the output of the primitive. Our hash function is 

based on a cipher C- Gear used in the Davies-Meyer mode to 

build a compression function. We use Merkle-Damgård to 

construct the hash upon this compression function. Further we 

describe in details the cipher and give a brief recall of the mode.  

4.1 The Cipher C-Gear 
The block cipher C- Gear (P, K) is an SP network with 16 rounds 

and designed according to the wide trail strategy. It has a state of 

1024 bits and supports 1024-bit keys. The state as well as the 

key is seen as 8x16 matrix of bytes – with ai,j,bi,j,i = 0,...,7,j = 

0,...,15 we denote the individual bytes of the state and key 

matrices, respectively. 

In each of the 16 rounds, the state S undergoes four byte-

oriented transformations, i.e. round R can be represented as: 

R = AK ◦ MC ◦ SR ◦ SB, 

Where AK, MC, SR, SB are acronyms for AddRoundKey, 

MixColumns, ShiftRows, and SubBytes, respectively. An 

additional AddRoundKey is perform at the beginning of the 

state update transformations (known as key prewhitening). 

The 1024-bit subkey Ki used in the i-th round is 

produced from the previous subkey Ki−1 with similar operations: 

Ki =AC◦MC◦SR◦SB(Ki−1), 

Where AC stands for AddRoundConstant. The prewhitening key 

K0 is the initial master key. The round and key schedule 

transformations are the standard operations used in most of the 

Rijndael-based primitives. For completeness of the description, 

in the sequel we give a brief definition. The superscripts new, 

old are used to denote the updated, previous values for the bytes 

(or the columns). 

SubBytes (SB). This transformation is the only non-linear part 

of the cipher. It consists of independent application of 8x8 bit S-

box to all the bytes of the state (or the subkey), etc. 

 
We use the invertible AES S-box S(·) for this purpose which is a 

composition of a finite field inversion and an affine 

transformation. The precise definition of the S-box is given in 

Table 1 in the form S(X1X2) = Y. 

ShiftRows (SR). It performs a cyclic shift of the rows of the 

matrix on different offsets that depend on the row index. The 

value of the offsets ria, rib, i = 0, . . . , 7 is different for the state 

and the key schedule: 

 
The precise values are given in Table 2. 



 

MixColumns (MC). The diffusion among the bytes is achieved 

with this transformation. It is a multiplication of the columns aj , 

bj of the state/subkeys by a matrix M: 

  
Where M is defined as: 

Table 1: The S-box used in Gear 

 

 

 

 

Table 2: The offsets used in ShiftRows 

 

 

 

We emphasize that the same matrix is used for both the state and 

key schedule. The multiplication is performed in GF(28) defined 

with the irreducible polynomial x8 +x4 +x3 +x+1. 

AddRoundKey (AK). The 1024-bit subkey is xored to the state. 

The XOR can be seen as byte-wise, i.e.: 

 

AddRoundConstant (AC). A constant Ci is xored to the subkey 

Ki – in a similar fashion, it can be represented as a byte-wise 

operation. The value of the constants is dependent on the index 

i. It is defined as: 

 

4.2  The Hash Function Gear 
Once we have defined C- Gear, we use a standard approach to 

build a hash function based on this cipher. First, we define the 

compression function CF. It takes two inputs: 1024-bit chaining 

value Hi and 1024-bit message Mi, and produces 1024-bit 

chaining value Hi+1 with Davies-Meyer mode of C- Gear, i.e.: 

Hi+1 = CF(Hi, Mi) = C- Gear (Hi, Mi) ⊕ Hi 

Further, we use this compression function to build a hash 

function with the Merkle-Damgård construction. Briefly, we fix 

an initial chaining value H0 equal to the first 128 bytes of the 

fractional part of π (see Table 3). We pad the message M (see 

below how the padding is performed), and split the expanded 

message into 1024-bits chunks Mi. Next, we iterate all the 

message blocks using the compression function based on the 

Merkle-Damgård construction: 



 

H0 = IV 

Hi+1 = CF(Hi, Mi) 

When the expanded message contains l blocks, the output Hl+1 is 

used to produce the final hash based on truncation, i.e. the hash 

of M is tr(Hl+1), there tr(X) truncates the leftmost bits of X, 

depending on the hash size.  

Table 3: The initial chaining value H0 

Thus, for 256-bit digests, tr(X) outputs the 256 lefttmost (most 

significant) bits of X, while for 512-bit digest this number is 

512. In general, for Gear −n, tr(X) outputs the n most significant 

bits of the last produced chaining value Hl+1. 

The padding. This procedure produces expanded message Me 

from the original input message M. It assures that the length (in 

bits) of M is properly encoded into the expanded message Me, 

and the length of Me is divisible by 1024. To achieve this we use 

a trivial padding by attaching a required number of 0’s to make 

the last message 

block 1024 bits, and always introduce an addition message block 

at the end that contains the length of M only. 

Let M has t bits. Then from M, first we produce Me ̃ = M00...0, 

where the number of 0’s is 1024−(t mod 1024) when t is not 

divisible by 1024 – otherwise we do not attach any 0’s. Next, we 

attach an additional 1024-bit block that contains 1024 − 64 = 

940 zeros, while the last 64 bits are equal to t, i.e. the expanded 

message is defined as Me = Me ̃00...0tbinary. 

Endian and mappings. Our hash function is little endian 

oriented – it regards 64-bit words as 8 bytes in reverse order 

(with the least significant byte coming first). Furthermore, the 

mapping of byte sequence to matrix of the state (or the key 

schedule) is from left to right, and top row to bottom row. For 

example, the 128-byte sequence a1, . . . , a128 is mapped to the 

matrix as follows: 

 

5. PSEUDO CODE AND TEST VECTORS 
The pseudo codes of state round, keyschedule round, C- Gear and 

Gear is given in Algorithm 1-4 respectively  

Algorithm 1 State  Round(S, Ki) 

S ← SubBytes(S) 

S ← ShiftRows(S) 

S ← MixColumns(S) 

S ← AddRoundKey(S, Ki) 

 

end 

Algorithm 2 KeySchedule  Round(Ki, i) 

Ki+1 ← SubBytes(Ki) 

Ki+1 ← ShiftRows(Ki+1) 

Ki+1 ← MixColumns(Ki+1) 

Ki+1 ← AddRoundConstant(Ki+1, i) 

 

end 

Algorithm 3 C− Gear (P, K) 

S ← AddRoundKey(P, K) K0 ← K 

for i = 0 to 15 do 

Ki+1 ← KeySchedule Round(Ki, i) 

S ← State Round(S) end for 

 

end 

Algorithm 4 Gear (M) 

M0|M1|...|Ml ←padded(M) H0 = IV 

for i = 0 to l do 

Hi+1 =C− Gear (Hi,Mi)⊕Hi  

end for 

output truncated(Hl)  

 

end 

A list of test vectors in given in Table 4. 

Table 4: Test vectors for Gear -512 

Gear (“ ”) 

8798dbba48ffd3b62e239b549499c09b 

3d4637273489f9061f5e1d8d214e31ae 

1dc13d88a561c5594c9937ee864140e9 

7f7b93ffd27e79251d4755a20eca60a4 

Gear ("The quick brown fox jumps over the lazy dog") 

9b182c6da0010a92e6df1dd67515764b 

53a909aecc9be8dbf1c47bf876b4be42 

7b96491fbf8e2e90453b4ac9cabf4b5d 

73394019ca7801d11307e8d000eed3e2 

Gear ("The quick brown fox jumps over the lazy dag") 

257269675f2d432ba8dbece0b25d4ac9 

a95450c9788a6ef65cee1d1e349b7ed4 

a13e0302d0d8204f17832933896ac7e4 

4b9709fd6ddb0f86732200955b51648e 



 

6. THE SECURITY OF THE MODE 
In our design we use two widely applied techniques for 

construction of hash functions, the Davies-Meyer mode and the 

Merkle-Damgård construction. 

The security of the single-block-length block cipher modes has 

been analyzed in [28, 6]. In particular, Black-Rogaway-

Shrimpton have proved that the Davies-Meyer mode has 

asymptotically optimal bound for collision and preimage 

resistance, i.e. the number of queries to the underlying cipher 

with randomly chosen key (a black box access) to find collisions 

or a preimage is roughly as predicted by the generic bound. Thus 

this mode is secure against the standard attacks and shortcut 

attacks can be found only by exploiting a weakness in the block 

cipher (but not in the mode). Therefore Gear is secure against the 

traditional attacks as long as C- Gear is secure. 

The Merkle-Damgård (MD) construction [12, 26] is an approach 

for building a collision resistant hash function from a collision 

resistant compression function. That is, if the hash function 

applies appropriate padding and the initial value is fixed, the 

hash function is collision resistant as long as the compression 

function has the same property. Note that in Gear, the initial 

value is fixed, and the padding is as required, thus the for 

collision resistance one only has to focus on the compression 

function. 

6.1 The Wide Pipe Construction 
The wide pipe construction proposed by Lucks [23] was 

developed to strengthen the security of the standard Merkle-

Damgård against a variety of generic attacks. Most of these 

attacks use the fact that the standard single-pipe chaining value 

and internal state can be insufficient against attacks that target 

the intermediate chaining values. In particular: 

 Length extension attacks – once the attacker has a single 

collision he can produce many more colliding message 

pairs. Assume H(·) is a single-pipe hash, and M1, M2 are 

such that H(M1) = H(M2). Then for any M, H(M1|M) = 

H(M2|M), thus the pair (M1|M,M2|M) is also a colliding 

pair. However, for wide-pipe hash function (such as in 

Gear), in general this is not true. The initial message pair 

M1, M2 collides only on half of the bits – the other half is 

truncated, and not necessarily produces collisions. Thus, 

extending the colliding pair with additional message results 

in a different input chaining values for the last compression 

function, and most likely, different hash values. 
 Second preimage attack by Kelsey-Schneier[19] – when 

the hashed message has l blocks (l invocations of 

compression functions), the complexity of finding a second 

preimage is 2n−l instead of the generic 2n. This comes from 

the fact that if the attacker is able to find a second preimage 

of any of the intermediate chaining values, then he will 

succeed to find a preimage for the whole hash. Thus instead 

of one final target (the digest), he can aim any of the l n-bit 

values. However, as in Gear the intermediate chaining 

values have at least 2n bits, the complexity of finding a 

second preimage for these values is at least 22n (instead of 

2n as in single-pipe). Thus, the wide-pipe Gear is resistant 

against this type of generic attacks. 

 Multicollisions by Joux[17] - producing multicollisions 

(many different messages hash to the same value) has much 

lower complexity than the generic bound. Joux has shown 

that for a single-pipe MD hash function, one can produce 

2t-collisions with only t · 2n/2 calls to the compression 

function. Joux’s idea is very simple and original – he 

proposed creating sequentially collisions for the 

consecutive compression function calls. That is, first one 

finds a colliding message pair (M 1
1
,  M 1

2
) for the first 

compression function, then (M 2
1
,  M 2

2
) for the second (the 

input chaining value coincides with the output of the 

previous), and keeps repeating this procedure for all t 

compression function calls. Then, all 2t messages M 1
𝑖1

 |

M 2
𝑖2

 | . . . | M l
𝑖l
 , ij ∈ 1, 2 hash to the same value. Again, to 

succeed with the above attack, one has to be able to find 

collisions (for the compression function), with a time 

complexity of finding collisions for the whole hash. 

However, in the double-pipe hash Gear, finding the 

intermediate collisions requires an effort of at least 2n 

compression function invocations. Therefore, Joux’s attack 

is not applicable to Gear. 

 Herding attack by Kelsey-Kohno[18] – the attacker 

presents a digest h, and then for an arbitrary message M he 

is able to find M2 such that H(M|M2) = h. The idea behind 

the herding attacks is the production of aso-called diamond 

structure. In brief, the attack is based again on producing 

collisions for the intermediate chaining values. Same as 

above, in Gear this type of attack is prevented by the wide-

pipe design. 

6.2  The Wide Trail Strategy 
The wide trail strategy [11] is one of the most popular 

approaches for designing block ciphers and cryptographic hash 

functions resistant against differential and linear attacks. 

Daemen and Rijmen noticed that the diffusion layer in SP 

ciphers can be chosen in a way that ensures a high number of 

differentially (or linearly) active S-boxes in any round-reduced 

characteristic. Two basic concepts are used for applying the 

wide trail: branch number and alternation of two different round 

transformations (which indeed can be combined into a single 

one). The branch number assures a minimal number of active S-

boxes in any two-round characteristic. As in C- Gear, the 

diffusion layer is based on MDS code (see the matrix 

multiplication), the branch number is maximal and equals to 9 – 

that is, any two-round differential (or linear) characteristic has at 

least 9 active S-boxes. The alternating transformations are 

achieved with two different linear layers – in the case of C- Gear 
these are the ShiftRows and MixColumns operations. As 

ShiftRows moves each row of the matrix to a different position, 

by Theorem 2 from [11], we get that any four-round trail has 9 · 

9 = 81 active S-boxes. Further in our analysis, we will use this 

lower bound to prove the resistance of Gear against various 

attacks. 

6.2.1 Collision Attacks 
The collision attacks on hash functions are based on finding 

differential trails with zero output difference. However, unlike 

differential distinguishers, where the probability can be as low 

as 2−n for n-bit hash, the trails for collisions have to have at least 

2−n/2 – otherwise, the generic collision finding algorithm (based 

for example on the Floyd’s cycle finding algorithm) would have 

lower complexity. We will show further in our analysis that no 

differential trail exists for C- Gear with a probability higher than 

2−n, which immediately allows to conclude that collision attacks 

based on differential trails are not applicable to Gear. Another 



 

type of collision attacks are based on the use of weak modes for 

the compression function. However, as we have shown earlier, 

the mode of Gear is secure. We emphasize as well that the use of 

Merkle-Damgård construction assures that since our 

compression function is collision resistant, then the whole hash 

function Gear is collision resistant as well. 

6.2.2 Preimage Attacks 
The (second) preimage attacks for hash function based on secure 

modes usually exploit the weak message expansion, and in 

particular the low diffusion. Most of these attacks are based on 

the meet-in-the-middle (MITM) attack and the recent 

improvement in the form of splice and cut [1]. Although no 

sufficient conditions are currently available that ensure the 

compression function is secure against preimage attacks, a good 

rule of the thumb is to have a high diffusion in the message 

expansion. In Gear, the compression function is based on the 

cipher C- Gear that has a very high diffusion in the key schedule. 

Notice that in each round of the cipher, the whole key is used, 

and after only three rounds, the key schedule achieves a full 

diffusion of the bits of the key. Thus, it is expected that 

preimage attacks cannot be launched on very high number of 

rounds. The precise bound (or at least currently the best result) is 

achieved by taking into account the latest results on the similar 

hash function Grøstl [13]. Following the result on Wu et al. [29], 

it is clear that by using the partial matching technique and chunk 

separation, one can launch a pseudo-preimage attack on 8 

rounds of Gear -512, with around 2507 time and memory 

complexity – we omit the details as the analysis is very similar 

to the one presented in [29]. We also note that shortcut attacks 

that exploit weak modes are discarded as well as the mode used 

in Gear is provably secure against preimage attacks. 

6.2.3 Distinguishers 
Non-trivial distinguishing attacks became increasingly popular 

during the SHA- 3 competition [27]. In this section we show the 

resistance of Gear against all possible known distinguishers for 

byte-oriented primitives. 

A. Differential and Linear Distinguishers 

Let us first examine the resistance of C- Gear against the two 

most popular forms of analysis: the differential [3] and linear 

cryptanalysis [24]. Here we want to emphasize one important 

point – the claimed security level of the examined cipher will be 

only in accordance to the application for the hash function. As 

the maximal output size of Gear is 512 bits (all other versions 

have smaller output, thus generic attacks have lower 

complexity), we examine only the security of Gear -512. Thus, 

we need to prove that no differential and linear attacks on C- 

Gear exist with complexity lower than 2512. Although we do not 

claim higher security level for C- Gear, it is easy to extend the 

below analysis to reach such level – we omit the details as we 

use C- Gear only as an underlying cipher for 512-bit hash. 

 

 Linear attacks 

We have seen that C- Gear follows the wide trail strategy; hence 

any 4-round trail has at least 81 active S-boxes. The best linear 

bias of the S-box used in C- Gear is 2−3, thus the probability of 

any 4-round linear trail is at most 2−3·81 = 2−243, while for any 

12-round trail is at most 23·(−243) = 2−729. Hence, C- Gear achieves 

the claimed security level of 512 against linear cryptanalysis. 

We point out as well that the low probability linear trail 2−729 

requires an amount of approximately 21458 pairs of plaintext- 

ciphertext which exceeds the whole codebook – thus the security 

level of the cipher against linear cryptanalysis is actually 1024 

bits. 

 

 Standard differential attacks 

First let us take a look at standard differential attacks and in 

particular single-key differential trails. When there is no 

difference in the key of C- Gear (which can be translated into no 

difference in the message block of Gear), the resistance against 

differential attacks comes straightforwardly from the wide trail 

strategy: 1) the maximal differential propagation probability of 

the S-box is 2−6, 2) any four-round differential trail has 81 active 

S-box. Thus, the probability of any four-round differential trail 

is 2−6·81 = 2−486, while the probability of any eight-round trails is 

2−2·486 = 2−972. Obviously the low probability suffices to prove 

the claimed security bound of 512 bits. Better bounds (lower 

probability trails) can be proven when trails are on 12 rounds – 

then the security level of 1024 bits is achieved. We avoid this, as 

for Gear we need a security level of only 512 bits. 

Related-key differential attacks on C- Gear do not improve the 

complexity of the best attacks. This comes from the fact that the 

key schedule of C- Gear undergoes the same (or very similar) 

transformations. Thus the probability of any related-key 

differential characteristic, only in the key schedule, would be at 

most 2−972 for eight rounds. When C- Gear is used in the hash 

function mode (as in Gear), the attacker has the freedom to 

choose the key – thus let us further examine the possibility of 

message modification. For this purpose, we first obtain tighter 

bounds on probability. From the wide trail strategy it follows 

that any two-round trail has at least 9 active S-boxes and any 

four-round has 81 active. Hence, any six consecutive rounds 

have 90 active S-boxes and the probability of such differential 

trail is 2−6·90 = 2−540, i.e. it is lower than 2−512 (which we need as 

we work with 512-bit hash). The attacker can use message 

modification and choose the value of the state and the subkey in 

order to pass some rounds for free. However, out of all 16 

rounds, he has to pass 11 rounds with the modification. As both 

the state and the key schedule are highly complex, we believe 

that this is hard to achieve, and estimate that only 2-4 rounds can 

be passed for free with message modification. This brings the 

total number of attacked rounds to 7-9 (2,3,4 rounds for free + 5 

rounds probabilistically). 

 

 Truncated differential attacks 

Truncated differentials [21] became increasingly popular as 

form of analysis of byte-oriented primitives after the invention 

of the Rebound attack [25] and Super S-boxes [14, 22]. These 

techniques have shown that the message modification combined 

with truncated differential can significantly increase the number 

of attacked rounds in frameworks such as known-key 

distinguishers for block ciphers or hash function attacks. 

Moreover, they stressed out that one cannot known in advance 

how many rounds can be passed for free when using message 

modification. In our analysis below we assume that this number 

is four as this is the state-of-the-art – we point out that further 

advancement in this field may bring up the number of rounds. 

However, the large security margin in Gear assures that only 

significant progress can influence security of our hash function. 

Our design is similar to the hash function Grøstl [13], thus we 

follow the line of research given in [16] and show a truncated 

differential attack on 10 rounds of Gear -512. The differential is 



 

given in Figure 1. The number of active S-boxes in the trail is as 

follow: 

64 → 8 → 1 → 8 → 64 → 128 → 64 → 8 → 1 → 8 → 64 

Using the technique from [16], we assume that the four middle 

rounds, i.e. 8 → 64 → 128 → 64 → 8, are part of the inbound 

phase of the rebound attack, thus it is passed for free. The 

remaining six rounds, the first three, and the last three, are the 

outbound phase, and are passed probabilistically. The 

probability of this phase is 22·(−56) = 2−112 – for each transition 8 

→ 1, it is 2−56, while the for the rest (1 → 8, 8 → 64), the 

probability is 1.  

  

Figure 1. The truncated differential for 10-round attack on 

Gear -512 

 

The complexity of finding a conforming pair for the inbound 

phase, is 2280 time and 264 memory (see [16] for details). Thus 

the total complexity of the attack is 2112+280 = 2392 time and 264 

memory. 

B. Slide Attacks 

Slide attacks [4, 5] exploit rounds self-similarity and can be 

devastating for launching attacks on ciphers that use completely 

equal round transformations. To stop this type of attacks, round 

constants are introduced. C- Gear does not employ constants as 

part of the state transformations; however, the key schedule 

applies the AddRoundConstant operation which assures that 

each round of the key schedule is different (note that the round 

constants Ci depend on the round index i). Any slid pair (with 

one or a few rounds apart), that is completely identical at the 

beginning, has to differ in the following round in at least 16 

bytes of the subkey – the whole bottom row would be different 

as the round index is different. This leads to a very fast 

expansion of the key difference (between the elements of the 

slid pair) in the few consecutive rounds which in turn assures a 

high number of active S-boxes. Hence slide attacks could be 

possibly applied to Gear on few rounds only. 

C. Integral Attacks 

Integral (or square) attack was first launched against the block 

cipher Square [10]. In general, it is applicable to any Rijndael-

like cipher, and it exploits the fact that the S-boxes are 

invertible. Unlike for ciphers, where integral attacks lead to a 

key recovery, for hash functions, the additional rounds before 

and after the square property cannot be efficiently exploited. 

Thus as Gear is Rijndael-based hash function, integral property 

can be exploited and we expect that integral attacks for Gear can 

be launched on around three-five rounds. 

D. Rotational Cryptanalysis 

Rotational attacks [20] follow the expansion through the rounds 

of the primitive of a pair of inputs where the second is a rotation 

of the first, i.e. each word (or possibly a byte or a column) of the 

second state, is produced by rotating the corresponding word of 

the first state. In general, rotational analysis is applicable to 

addition-rotation-xor primitives, however byte-oriented ciphers 

and hash function can be susceptible when the underlying 

transformations are rotational- friendly. The main method for 

achieving resistance against rotational attacks is the use of 

constants. In Gear, this is achieved by the AddRoundKey trans- 

formation. Note, that the key schedule assures that no rotational 

subkey pair can be produced in several consecutive rounds. 

Hence, we can conclude that rotational analysis is possibly 

applicable only to a few rounds of the compression function. 

E. Resistance Against Other Dedicated Distinguishers 

The methods of analysis of byte-oriented primitives have been 

known for a while now. In the previous sections we have 

investigated all such methods. Further we present a dedicated 

approach that might be applicable only to our function and the 

underlying block cipher. In fact we show that we have taken the 

necessary steps to stop this type of attack. Note that the state and 

the key have the same size and use very similar transformations. 

A possible attack that might exploit this type of property is the 

one where the adversary switches the key and the plaintext and 

produces the same ciphertext, i.e. EK(P) = EP(K). However, to 

launch such attack the transformations should be the same, or at 

least similar – in this case the property might work for particular 

inputs only. The transformations in the state and in the key 

schedule differ at two places: ShiftRows and key/constant 

addition. If at the input of ShiftRows the state and the subkey 

have the same value, then at the output would be the same only 

if all the bytes within the row are equal. To achieve the same 

property for the addition, AddRoundKey and 

AddRoundConstant should be the same as well, i.e. the constant 

has to coincide with the subkey. However, it is clear that since in 

AddRoundConstant the last row byte constants are different, the 

output of the next application of ShiftRows will not produce 

equal values for the last row. Thus Gear resists this type of 

distinguisher. 

7. CONCLUSION 
We have presented a new cryptographic hash function Gear that 

supports digests of up to 512 bits. Our proposal is based on the 

wide trail strategy and uses an underlying block cipher with 

1024 bit key and state. We use mode and construction with 

longstanding security analysis and provable against most of the 

generic attacks. We have shown that the hash function has a 

high security margin against all the known attacks available 

today. The claimed security level of Gear is given in Table 5. 

 

 

 

 

 

 

 

 



 

 

 

Table 5: The claimed security level of Gear and comparison 

to the level of an ideal hash function.  
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