

Design and Analysis of a New Hash Function Gear

Mohammad A. AlAhmad
Public Authority for Applied Education and Training

College of Basic Education
Computer Science Department

P.O.Box 34567 Adaliyah, 73205 Kuwait City, Kuwait

malahmads@yahoo.com

Imad Fakhri Alshaikhli
Department of Computer Science, International

Islamic University of Malaysia, 53100 Jalan Gombak
Kuala Lumpur, Malaysia

imadf@iium.edu.my

ABSTRACT.

A hash function usually has two main components: a

compression function or permutation function and mode of

operation. In this paper, we propose a new concrete novel design

of a permutation based hash functions called Gear. It is a hash

function based on block cipher in Davies-Meyer mode. It uses

the patched version of Merkle-Damgård, i.e. the wide pipe

construction as its mode of operation. Thus, the intermediate

chaining value has at least twice larger length than the output

hash. Also, we analyze Gear and prove it is hard to attack it with

complexities significantly less than brute force and it resists all

the generic attacks. And the permutations functions used in Gear
are inspired from the SHA-3 finalist Grøstl hash function which

is originally inspired from Rijndael design (AES). As a

consequence there is a very strong confusion and diffusion in

Gear.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND

INFORMATION SYSTEMS]: Security and Protection –

Authentication, Insurance.

General Terms
Security

Keywords: WP - permutation – block cipher – AES

1. INTRODUCTION
Cryptographic hash functions have indeed proved to be the

workhorses for modern cryptographic hash functions. Another

name given to cryptographic hash functions is “Swiss knife

army” because it can serve many different purposes such as

digital signatures, conventional message authentication to secure

passwords storage or forensics data identification.

Cryptographic hash functions take an unfixed size of input and

produce a fixed size of an output.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SIN '14, September 09 - 11 2014, Glasgow, Scotland Uk
Copyright 2014 ACM 978-1-4503-3033-6/14/09…$15.00.

http://dx.doi.org/10.1145/2659651.2659652

 A hash function usually built from two main components: (1) a

basic primitive compression function C and (2) an iterative

mode of operation H, where the symbol HC denotes the hash

function HC based on the compression function C. Most hash

functions in use today are so-called iterated hash functions, i.e.

Merkle-Damgård (MD), based on iterating a compression

function. Examples of iterated hash functions are MD4, MD5,

SHA and RIPEMD-160. For a cryptographic hash function HC,

if the compression function C is resistant to the following

attacks, then the hash function considered secure:

• Preimage: given y = H(x), find x
’
 such that H(x

’

) = y,

• 2
nd

 preimage: given an x and y=H(x) find x
’
 ≠ x such

that H(x
’

) = y,

• Collision: find x and x
’
 such that x

’
 ≠ x and H(x) =H(x

’

).

Recently, several collisions were announced which decreased

the security of some of the existing hash functions. Particularly,

collisions were announced in SHA-0, MD4, MD5, HAVAL-

128, and RIPEMD. French researcher Antoine Joux et al. [17]

presented the collision in SHA-0, and a group of collisions

against MD4, MD5, HAVAL- 128, and RIPEMD were found by

the Chinese researcher Xiaoyun Wang with co-authors Dengguo

Feng, Lai, and Hongbo Yu [30]. After that, in February 2005,

the same Xiaoyun Wang, Lisa Yiqun Yin, and Hongbo Yu

found collisions in SHA-1 using 269 hash computations [30].

Several strategies were developed to thwart these attacks. Stefan

lucks et al. [23] introduced the Wide Pipe (WP) hash

construction as an intermediate version of Merkle-Damgård to

improve the structural weaknesses of Merkle-Damgård design.

The process is similar to Merkle-Damgård algorithm steps

except of having a larger internal state size, which means the

final hash digest is smaller than the internal state size of bit

length. For example, the final compression function compresses

the internal state length (for ex, 2n-bits) to output a hash digest

of n-bit. This simply can be achieved by discarding the last half

of 2n-bit output. WP is used in this paper to construct Gear hash

function. It is used as an operation of mode for Gear. Mridul

Nandi and Souradyauti Paul et al. [31] proposed the fast wide

pipe (FWP) construction to overcome these attacks. It is twice

faster than the wide pipe construction. HAsh Iterated

FrAmework (HAIFA) is also a patched version Merkle-

Damgård construction [32]. HAIFA design solves many of the

internal collision problems associated with the classic MD

construction design by adding a fixed (optional) salt of s-bits

along with a (mandatory) counter Ci of t-bits to every message

block in the iteration i of the hash function. Wide-pipe and

HAIFA are very similar designs. Where, sponge construction is

an iterative construction designed by Guido Bertoni, Joan

Daemen, Micheal Peeter and Gilles Van Assche to replace

Merkle-Damgård construction [2]. It is a construction that maps

a variable length input to a variable length output. Keccak

(SHA-3 winner) hash function uses sponge construction. In the

next section, we demonstrate our new proposal Gear hash

function in more details.

2. OUR PROPOSAL
We propose a new hash function called Gear that supports 256-

512 bits digests. The basic building block of our hash is a block

cipher. By applying standard design approaches next we create a

compression function (based on the cipher), and finally a hash

function. We use the following design techniques:

 The block cipher applies the wide trail strategy.

 A compression function based on the block cipher in

Davies-Meyer mode.

 A hash built upon an iterative compression function with

the Merkle-Damgård construction.

 A wide pipe construction, i.e. the intermediate chaining

value has at least twice larger length than the output hash.

3. Design Goals
The main design goal of any modern hash function is the

security of the construction. In the last several years, the notion

of security has expanded to include not only the basic

requirements on collisions and second preimage resistance, but

also a wide variety of distinguishers. In fact, non-formally a

hash function is supposed to behave as a random oracle.

Although in this model, trivial distinguishers do exist for every

hash function, the designers aim to construct hash function that

will be resistant against all possible non-trivial distinguishers,

i.e. the hash does not exhibit any structural distinguishers, and,

in a line of notation from the Sponge design [2], it is a hermetic

design.

We aim to achieve this high security requirement with our

proposal as well. More precisely, we would like to achieve the

standard security margin against the following attacks and

structural distinguishers:

 No collisions can be found in n-bit Gear with significantly

less than 2n

hash function invocations

 No (second) preimage can be found in n-bit Gear with

significantly less

then 2n invocations

 No non-trivial structural distinguishers can be found for

Gear with a complexity significantly lower than the

complexity required to find (or confirm) such property in a

secure hash function (such as SHA-2, SHA-3, etc.) Here,

we would like to point out that the deviation “significantly

lower” from “lower” is introduced to annulate the analysis

based on the recently discovered bicliques[7] – the latest

results suggest that such analytical results are most likely

applicable to all cryptographic primitives, thus one cannot

expect the achieve the ideal security level. On the other

hand, the complexity of the attacks not based on

granulation of the compression function (i.e. all other

analysis except bicliques), should always exceed our

claimed security bound.

4. DESCRIPTION OF Gear
Our proposal Gear is a wide pipe hash function with an internal

state of 1024 bits. It supports digests of 1 to 512 bits. For

security reasons, we suggest a minimal output of 256 bits –

further we describe the two main versions Gear - 256 and Gear -
512, with an output length of 256 and 512 bits, respectively. We

emphasize that these two versions, as well as all the possible

versions with a hash output between 256 and 512 bits, are based

on the same primitive, and differ only in the number of bits that

are truncated at the output of the primitive. Our hash function is

based on a cipher C- Gear used in the Davies-Meyer mode to

build a compression function. We use Merkle-Damgård to

construct the hash upon this compression function. Further we

describe in details the cipher and give a brief recall of the mode.

4.1 The Cipher C-Gear
The block cipher C- Gear (P, K) is an SP network with 16 rounds

and designed according to the wide trail strategy. It has a state of

1024 bits and supports 1024-bit keys. The state as well as the

key is seen as 8x16 matrix of bytes – with ai,j,bi,j,i = 0,...,7,j =

0,...,15 we denote the individual bytes of the state and key

matrices, respectively.

In each of the 16 rounds, the state S undergoes four byte-

oriented transformations, i.e. round R can be represented as:

R = AK ◦ MC ◦ SR ◦ SB,

Where AK, MC, SR, SB are acronyms for AddRoundKey,

MixColumns, ShiftRows, and SubBytes, respectively. An

additional AddRoundKey is perform at the beginning of the

state update transformations (known as key prewhitening).

The 1024-bit subkey Ki used in the i-th round is

produced from the previous subkey Ki−1 with similar operations:

Ki =AC◦MC◦SR◦SB(Ki−1),

Where AC stands for AddRoundConstant. The prewhitening key

K0 is the initial master key. The round and key schedule

transformations are the standard operations used in most of the

Rijndael-based primitives. For completeness of the description,

in the sequel we give a brief definition. The superscripts new,

old are used to denote the updated, previous values for the bytes

(or the columns).

SubBytes (SB). This transformation is the only non-linear part

of the cipher. It consists of independent application of 8x8 bit S-

box to all the bytes of the state (or the subkey), etc.

We use the invertible AES S-box S(·) for this purpose which is a

composition of a finite field inversion and an affine

transformation. The precise definition of the S-box is given in

Table 1 in the form S(X1X2) = Y.

ShiftRows (SR). It performs a cyclic shift of the rows of the

matrix on different offsets that depend on the row index. The

value of the offsets ria, rib, i = 0, . . . , 7 is different for the state

and the key schedule:

The precise values are given in Table 2.

MixColumns (MC). The diffusion among the bytes is achieved

with this transformation. It is a multiplication of the columns aj ,

bj of the state/subkeys by a matrix M:

Where M is defined as:

Table 1: The S-box used in Gear

Table 2: The offsets used in ShiftRows

We emphasize that the same matrix is used for both the state and

key schedule. The multiplication is performed in GF(28) defined

with the irreducible polynomial x8 +x4 +x3 +x+1.

AddRoundKey (AK). The 1024-bit subkey is xored to the state.

The XOR can be seen as byte-wise, i.e.:

AddRoundConstant (AC). A constant Ci is xored to the subkey

Ki – in a similar fashion, it can be represented as a byte-wise

operation. The value of the constants is dependent on the index

i. It is defined as:

4.2 The Hash Function Gear
Once we have defined C- Gear, we use a standard approach to

build a hash function based on this cipher. First, we define the

compression function CF. It takes two inputs: 1024-bit chaining

value Hi and 1024-bit message Mi, and produces 1024-bit

chaining value Hi+1 with Davies-Meyer mode of C- Gear, i.e.:

Hi+1 = CF(Hi, Mi) = C- Gear (Hi, Mi) ⊕ Hi

Further, we use this compression function to build a hash

function with the Merkle-Damgård construction. Briefly, we fix

an initial chaining value H0 equal to the first 128 bytes of the

fractional part of π (see Table 3). We pad the message M (see

below how the padding is performed), and split the expanded

message into 1024-bits chunks Mi. Next, we iterate all the

message blocks using the compression function based on the

Merkle-Damgård construction:

H0 = IV

Hi+1 = CF(Hi, Mi)

When the expanded message contains l blocks, the output Hl+1 is

used to produce the final hash based on truncation, i.e. the hash

of M is tr(Hl+1), there tr(X) truncates the leftmost bits of X,

depending on the hash size.

Table 3: The initial chaining value H0

Thus, for 256-bit digests, tr(X) outputs the 256 lefttmost (most

significant) bits of X, while for 512-bit digest this number is

512. In general, for Gear −n, tr(X) outputs the n most significant

bits of the last produced chaining value Hl+1.

The padding. This procedure produces expanded message Me

from the original input message M. It assures that the length (in

bits) of M is properly encoded into the expanded message Me,

and the length of Me is divisible by 1024. To achieve this we use

a trivial padding by attaching a required number of 0’s to make

the last message

block 1024 bits, and always introduce an addition message block

at the end that contains the length of M only.

Let M has t bits. Then from M, first we produce Me ̃ = M00...0,

where the number of 0’s is 1024−(t mod 1024) when t is not

divisible by 1024 – otherwise we do not attach any 0’s. Next, we

attach an additional 1024-bit block that contains 1024 − 64 =

940 zeros, while the last 64 bits are equal to t, i.e. the expanded

message is defined as Me = Me ̃00...0tbinary.

Endian and mappings. Our hash function is little endian

oriented – it regards 64-bit words as 8 bytes in reverse order

(with the least significant byte coming first). Furthermore, the

mapping of byte sequence to matrix of the state (or the key

schedule) is from left to right, and top row to bottom row. For

example, the 128-byte sequence a1, . . . , a128 is mapped to the

matrix as follows:

5. PSEUDO CODE AND TEST VECTORS
The pseudo codes of state round, keyschedule round, C- Gear and

Gear is given in Algorithm 1-4 respectively

Algorithm 1 State Round(S, Ki)

S ← SubBytes(S)

S ← ShiftRows(S)

S ← MixColumns(S)

S ← AddRoundKey(S, Ki)

end

Algorithm 2 KeySchedule Round(Ki, i)

Ki+1 ← SubBytes(Ki)

Ki+1 ← ShiftRows(Ki+1)

Ki+1 ← MixColumns(Ki+1)

Ki+1 ← AddRoundConstant(Ki+1, i)

end

Algorithm 3 C− Gear (P, K)

S ← AddRoundKey(P, K) K0 ← K

for i = 0 to 15 do

Ki+1 ← KeySchedule Round(Ki, i)

S ← State Round(S) end for

end

Algorithm 4 Gear (M)

M0|M1|...|Ml ←padded(M) H0 = IV

for i = 0 to l do

Hi+1 =C− Gear (Hi,Mi)⊕Hi

end for

output truncated(Hl)

end

A list of test vectors in given in Table 4.

Table 4: Test vectors for Gear -512

Gear (“ ”)

8798dbba48ffd3b62e239b549499c09b

3d4637273489f9061f5e1d8d214e31ae

1dc13d88a561c5594c9937ee864140e9

7f7b93ffd27e79251d4755a20eca60a4

Gear ("The quick brown fox jumps over the lazy dog")

9b182c6da0010a92e6df1dd67515764b

53a909aecc9be8dbf1c47bf876b4be42

7b96491fbf8e2e90453b4ac9cabf4b5d

73394019ca7801d11307e8d000eed3e2

Gear ("The quick brown fox jumps over the lazy dag")

257269675f2d432ba8dbece0b25d4ac9

a95450c9788a6ef65cee1d1e349b7ed4

a13e0302d0d8204f17832933896ac7e4

4b9709fd6ddb0f86732200955b51648e

6. THE SECURITY OF THE MODE
In our design we use two widely applied techniques for

construction of hash functions, the Davies-Meyer mode and the

Merkle-Damgård construction.

The security of the single-block-length block cipher modes has

been analyzed in [28, 6]. In particular, Black-Rogaway-

Shrimpton have proved that the Davies-Meyer mode has

asymptotically optimal bound for collision and preimage

resistance, i.e. the number of queries to the underlying cipher

with randomly chosen key (a black box access) to find collisions

or a preimage is roughly as predicted by the generic bound. Thus

this mode is secure against the standard attacks and shortcut

attacks can be found only by exploiting a weakness in the block

cipher (but not in the mode). Therefore Gear is secure against the

traditional attacks as long as C- Gear is secure.

The Merkle-Damgård (MD) construction [12, 26] is an approach

for building a collision resistant hash function from a collision

resistant compression function. That is, if the hash function

applies appropriate padding and the initial value is fixed, the

hash function is collision resistant as long as the compression

function has the same property. Note that in Gear, the initial

value is fixed, and the padding is as required, thus the for

collision resistance one only has to focus on the compression

function.

6.1 The Wide Pipe Construction
The wide pipe construction proposed by Lucks [23] was

developed to strengthen the security of the standard Merkle-

Damgård against a variety of generic attacks. Most of these

attacks use the fact that the standard single-pipe chaining value

and internal state can be insufficient against attacks that target

the intermediate chaining values. In particular:

 Length extension attacks – once the attacker has a single

collision he can produce many more colliding message

pairs. Assume H(·) is a single-pipe hash, and M1, M2 are

such that H(M1) = H(M2). Then for any M, H(M1|M) =

H(M2|M), thus the pair (M1|M,M2|M) is also a colliding

pair. However, for wide-pipe hash function (such as in

Gear), in general this is not true. The initial message pair

M1, M2 collides only on half of the bits – the other half is

truncated, and not necessarily produces collisions. Thus,

extending the colliding pair with additional message results

in a different input chaining values for the last compression

function, and most likely, different hash values.
 Second preimage attack by Kelsey-Schneier[19] – when

the hashed message has l blocks (l invocations of

compression functions), the complexity of finding a second

preimage is 2n−l instead of the generic 2n. This comes from

the fact that if the attacker is able to find a second preimage

of any of the intermediate chaining values, then he will

succeed to find a preimage for the whole hash. Thus instead

of one final target (the digest), he can aim any of the l n-bit

values. However, as in Gear the intermediate chaining

values have at least 2n bits, the complexity of finding a

second preimage for these values is at least 22n (instead of

2n as in single-pipe). Thus, the wide-pipe Gear is resistant

against this type of generic attacks.

 Multicollisions by Joux[17] - producing multicollisions

(many different messages hash to the same value) has much

lower complexity than the generic bound. Joux has shown

that for a single-pipe MD hash function, one can produce

2t-collisions with only t · 2n/2 calls to the compression

function. Joux’s idea is very simple and original – he

proposed creating sequentially collisions for the

consecutive compression function calls. That is, first one

finds a colliding message pair (M 1
1
, M 1

2
) for the first

compression function, then (M 2
1
, M 2

2
) for the second (the

input chaining value coincides with the output of the

previous), and keeps repeating this procedure for all t

compression function calls. Then, all 2t messages M 1
𝑖1

 |

M 2
𝑖2

 | . . . | M l
𝑖l
 , ij ∈ 1, 2 hash to the same value. Again, to

succeed with the above attack, one has to be able to find

collisions (for the compression function), with a time

complexity of finding collisions for the whole hash.

However, in the double-pipe hash Gear, finding the

intermediate collisions requires an effort of at least 2n

compression function invocations. Therefore, Joux’s attack

is not applicable to Gear.

 Herding attack by Kelsey-Kohno[18] – the attacker

presents a digest h, and then for an arbitrary message M he

is able to find M2 such that H(M|M2) = h. The idea behind

the herding attacks is the production of aso-called diamond

structure. In brief, the attack is based again on producing

collisions for the intermediate chaining values. Same as

above, in Gear this type of attack is prevented by the wide-

pipe design.

6.2 The Wide Trail Strategy
The wide trail strategy [11] is one of the most popular

approaches for designing block ciphers and cryptographic hash

functions resistant against differential and linear attacks.

Daemen and Rijmen noticed that the diffusion layer in SP

ciphers can be chosen in a way that ensures a high number of

differentially (or linearly) active S-boxes in any round-reduced

characteristic. Two basic concepts are used for applying the

wide trail: branch number and alternation of two different round

transformations (which indeed can be combined into a single

one). The branch number assures a minimal number of active S-

boxes in any two-round characteristic. As in C- Gear, the

diffusion layer is based on MDS code (see the matrix

multiplication), the branch number is maximal and equals to 9 –

that is, any two-round differential (or linear) characteristic has at

least 9 active S-boxes. The alternating transformations are

achieved with two different linear layers – in the case of C- Gear
these are the ShiftRows and MixColumns operations. As

ShiftRows moves each row of the matrix to a different position,

by Theorem 2 from [11], we get that any four-round trail has 9 ·

9 = 81 active S-boxes. Further in our analysis, we will use this

lower bound to prove the resistance of Gear against various

attacks.

6.2.1 Collision Attacks
The collision attacks on hash functions are based on finding

differential trails with zero output difference. However, unlike

differential distinguishers, where the probability can be as low

as 2−n for n-bit hash, the trails for collisions have to have at least

2−n/2 – otherwise, the generic collision finding algorithm (based

for example on the Floyd’s cycle finding algorithm) would have

lower complexity. We will show further in our analysis that no

differential trail exists for C- Gear with a probability higher than

2−n, which immediately allows to conclude that collision attacks

based on differential trails are not applicable to Gear. Another

type of collision attacks are based on the use of weak modes for

the compression function. However, as we have shown earlier,

the mode of Gear is secure. We emphasize as well that the use of

Merkle-Damgård construction assures that since our

compression function is collision resistant, then the whole hash

function Gear is collision resistant as well.

6.2.2 Preimage Attacks
The (second) preimage attacks for hash function based on secure

modes usually exploit the weak message expansion, and in

particular the low diffusion. Most of these attacks are based on

the meet-in-the-middle (MITM) attack and the recent

improvement in the form of splice and cut [1]. Although no

sufficient conditions are currently available that ensure the

compression function is secure against preimage attacks, a good

rule of the thumb is to have a high diffusion in the message

expansion. In Gear, the compression function is based on the

cipher C- Gear that has a very high diffusion in the key schedule.

Notice that in each round of the cipher, the whole key is used,

and after only three rounds, the key schedule achieves a full

diffusion of the bits of the key. Thus, it is expected that

preimage attacks cannot be launched on very high number of

rounds. The precise bound (or at least currently the best result) is

achieved by taking into account the latest results on the similar

hash function Grøstl [13]. Following the result on Wu et al. [29],

it is clear that by using the partial matching technique and chunk

separation, one can launch a pseudo-preimage attack on 8

rounds of Gear -512, with around 2507 time and memory

complexity – we omit the details as the analysis is very similar

to the one presented in [29]. We also note that shortcut attacks

that exploit weak modes are discarded as well as the mode used

in Gear is provably secure against preimage attacks.

6.2.3 Distinguishers
Non-trivial distinguishing attacks became increasingly popular

during the SHA- 3 competition [27]. In this section we show the

resistance of Gear against all possible known distinguishers for

byte-oriented primitives.

A. Differential and Linear Distinguishers

Let us first examine the resistance of C- Gear against the two

most popular forms of analysis: the differential [3] and linear

cryptanalysis [24]. Here we want to emphasize one important

point – the claimed security level of the examined cipher will be

only in accordance to the application for the hash function. As

the maximal output size of Gear is 512 bits (all other versions

have smaller output, thus generic attacks have lower

complexity), we examine only the security of Gear -512. Thus,

we need to prove that no differential and linear attacks on C-

Gear exist with complexity lower than 2512. Although we do not

claim higher security level for C- Gear, it is easy to extend the

below analysis to reach such level – we omit the details as we

use C- Gear only as an underlying cipher for 512-bit hash.

 Linear attacks

We have seen that C- Gear follows the wide trail strategy; hence

any 4-round trail has at least 81 active S-boxes. The best linear

bias of the S-box used in C- Gear is 2−3, thus the probability of

any 4-round linear trail is at most 2−3·81 = 2−243, while for any

12-round trail is at most 23·(−243) = 2−729. Hence, C- Gear achieves

the claimed security level of 512 against linear cryptanalysis.

We point out as well that the low probability linear trail 2−729

requires an amount of approximately 21458 pairs of plaintext-

ciphertext which exceeds the whole codebook – thus the security

level of the cipher against linear cryptanalysis is actually 1024

bits.

 Standard differential attacks

First let us take a look at standard differential attacks and in

particular single-key differential trails. When there is no

difference in the key of C- Gear (which can be translated into no

difference in the message block of Gear), the resistance against

differential attacks comes straightforwardly from the wide trail

strategy: 1) the maximal differential propagation probability of

the S-box is 2−6, 2) any four-round differential trail has 81 active

S-box. Thus, the probability of any four-round differential trail

is 2−6·81 = 2−486, while the probability of any eight-round trails is

2−2·486 = 2−972. Obviously the low probability suffices to prove

the claimed security bound of 512 bits. Better bounds (lower

probability trails) can be proven when trails are on 12 rounds –

then the security level of 1024 bits is achieved. We avoid this, as

for Gear we need a security level of only 512 bits.

Related-key differential attacks on C- Gear do not improve the

complexity of the best attacks. This comes from the fact that the

key schedule of C- Gear undergoes the same (or very similar)

transformations. Thus the probability of any related-key

differential characteristic, only in the key schedule, would be at

most 2−972 for eight rounds. When C- Gear is used in the hash

function mode (as in Gear), the attacker has the freedom to

choose the key – thus let us further examine the possibility of

message modification. For this purpose, we first obtain tighter

bounds on probability. From the wide trail strategy it follows

that any two-round trail has at least 9 active S-boxes and any

four-round has 81 active. Hence, any six consecutive rounds

have 90 active S-boxes and the probability of such differential

trail is 2−6·90 = 2−540, i.e. it is lower than 2−512 (which we need as

we work with 512-bit hash). The attacker can use message

modification and choose the value of the state and the subkey in

order to pass some rounds for free. However, out of all 16

rounds, he has to pass 11 rounds with the modification. As both

the state and the key schedule are highly complex, we believe

that this is hard to achieve, and estimate that only 2-4 rounds can

be passed for free with message modification. This brings the

total number of attacked rounds to 7-9 (2,3,4 rounds for free + 5

rounds probabilistically).

 Truncated differential attacks

Truncated differentials [21] became increasingly popular as

form of analysis of byte-oriented primitives after the invention

of the Rebound attack [25] and Super S-boxes [14, 22]. These

techniques have shown that the message modification combined

with truncated differential can significantly increase the number

of attacked rounds in frameworks such as known-key

distinguishers for block ciphers or hash function attacks.

Moreover, they stressed out that one cannot known in advance

how many rounds can be passed for free when using message

modification. In our analysis below we assume that this number

is four as this is the state-of-the-art – we point out that further

advancement in this field may bring up the number of rounds.

However, the large security margin in Gear assures that only

significant progress can influence security of our hash function.

Our design is similar to the hash function Grøstl [13], thus we

follow the line of research given in [16] and show a truncated

differential attack on 10 rounds of Gear -512. The differential is

given in Figure 1. The number of active S-boxes in the trail is as

follow:

64 → 8 → 1 → 8 → 64 → 128 → 64 → 8 → 1 → 8 → 64

Using the technique from [16], we assume that the four middle

rounds, i.e. 8 → 64 → 128 → 64 → 8, are part of the inbound

phase of the rebound attack, thus it is passed for free. The

remaining six rounds, the first three, and the last three, are the

outbound phase, and are passed probabilistically. The

probability of this phase is 22·(−56) = 2−112 – for each transition 8

→ 1, it is 2−56, while the for the rest (1 → 8, 8 → 64), the

probability is 1.

Figure 1. The truncated differential for 10-round attack on

Gear -512

The complexity of finding a conforming pair for the inbound

phase, is 2280 time and 264 memory (see [16] for details). Thus

the total complexity of the attack is 2112+280 = 2392 time and 264

memory.

B. Slide Attacks

Slide attacks [4, 5] exploit rounds self-similarity and can be

devastating for launching attacks on ciphers that use completely

equal round transformations. To stop this type of attacks, round

constants are introduced. C- Gear does not employ constants as

part of the state transformations; however, the key schedule

applies the AddRoundConstant operation which assures that

each round of the key schedule is different (note that the round

constants Ci depend on the round index i). Any slid pair (with

one or a few rounds apart), that is completely identical at the

beginning, has to differ in the following round in at least 16

bytes of the subkey – the whole bottom row would be different

as the round index is different. This leads to a very fast

expansion of the key difference (between the elements of the

slid pair) in the few consecutive rounds which in turn assures a

high number of active S-boxes. Hence slide attacks could be

possibly applied to Gear on few rounds only.

C. Integral Attacks

Integral (or square) attack was first launched against the block

cipher Square [10]. In general, it is applicable to any Rijndael-

like cipher, and it exploits the fact that the S-boxes are

invertible. Unlike for ciphers, where integral attacks lead to a

key recovery, for hash functions, the additional rounds before

and after the square property cannot be efficiently exploited.

Thus as Gear is Rijndael-based hash function, integral property

can be exploited and we expect that integral attacks for Gear can

be launched on around three-five rounds.

D. Rotational Cryptanalysis

Rotational attacks [20] follow the expansion through the rounds

of the primitive of a pair of inputs where the second is a rotation

of the first, i.e. each word (or possibly a byte or a column) of the

second state, is produced by rotating the corresponding word of

the first state. In general, rotational analysis is applicable to

addition-rotation-xor primitives, however byte-oriented ciphers

and hash function can be susceptible when the underlying

transformations are rotational- friendly. The main method for

achieving resistance against rotational attacks is the use of

constants. In Gear, this is achieved by the AddRoundKey trans-

formation. Note, that the key schedule assures that no rotational

subkey pair can be produced in several consecutive rounds.

Hence, we can conclude that rotational analysis is possibly

applicable only to a few rounds of the compression function.

E. Resistance Against Other Dedicated Distinguishers

The methods of analysis of byte-oriented primitives have been

known for a while now. In the previous sections we have

investigated all such methods. Further we present a dedicated

approach that might be applicable only to our function and the

underlying block cipher. In fact we show that we have taken the

necessary steps to stop this type of attack. Note that the state and

the key have the same size and use very similar transformations.

A possible attack that might exploit this type of property is the

one where the adversary switches the key and the plaintext and

produces the same ciphertext, i.e. EK(P) = EP(K). However, to

launch such attack the transformations should be the same, or at

least similar – in this case the property might work for particular

inputs only. The transformations in the state and in the key

schedule differ at two places: ShiftRows and key/constant

addition. If at the input of ShiftRows the state and the subkey

have the same value, then at the output would be the same only

if all the bytes within the row are equal. To achieve the same

property for the addition, AddRoundKey and

AddRoundConstant should be the same as well, i.e. the constant

has to coincide with the subkey. However, it is clear that since in

AddRoundConstant the last row byte constants are different, the

output of the next application of ShiftRows will not produce

equal values for the last row. Thus Gear resists this type of

distinguisher.

7. CONCLUSION
We have presented a new cryptographic hash function Gear that

supports digests of up to 512 bits. Our proposal is based on the

wide trail strategy and uses an underlying block cipher with

1024 bit key and state. We use mode and construction with

longstanding security analysis and provable against most of the

generic attacks. We have shown that the hash function has a

high security margin against all the known attacks available

today. The claimed security level of Gear is given in Table 5.

Table 5: The claimed security level of Gear and comparison

to the level of an ideal hash function.

Hash

Collisio

n

Preimag

e

Second

Preimag

e

Distinguishe

r

Gear-
256

Ideal-

256

2
128

2
128

2
256

2
256

2
256

2
256

2
256

2
256

Gear-
512

Ideal

-512

2
256

2
256

2
512

2
512

2
512

2
512

2
512

2
512

Gear-
n

Ideal

-n

2
n/2

2
n/2

2
n

2
n

2
n

2
n

2
t

2
t

8. References
[1] K. Aoki and Y. Sasaki. Preimage attacks on one-block

MD4, 63-step MD5 and more. In R. M. Avanzi, L. Keliher,

and F. Sica, editors, Selected Areas in Cryptography,

volume 5381 of Lecture Notes in Computer Science, pages

103–119. Springer, 2008.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On

the indifferentiability of the Sponge construction. In N. P.

Smart, editor, EURO- CRYPT, volume 4965 of Lecture

Notes in Computer Science, pages 181– 197. Springer,

2008.

[3] Biham and A. Shamir. Differential cryptanalysis of DES-

like cryptosystems. J. Cryptology, 4(1):3–72, 1991.

[4] A. Biryukov and D. Wagner. Slide attacks. In L. R.

Knudsen, editor, FSE, volume 1636 of Lecture Notes in

Computer Science, pages 245–259. Springer, 1999.

[5] A. Biryukov and D. Wagner. Advanced slide attacks. In B.

Preneel, editor, EUROCRYPT, volume 1807 of Lecture

Notes in Computer Science, pages 589–606. Springer,

2000.

[6] J. Black, P. Rogaway, and T. Shrimpton. Black-box

analysis of the block- cipher-based hash-function

constructions from PGV. In M. Yung, editor, CRYPTO,

volume 2442 of Lecture Notes in Computer Science, pages

320– 335. Springer, 2002.

[7] A. Bogdanov, D. Khovratovich, and C. Rechberger.

Biclique cryptanalysis of the full AES. In D. H. Lee and X.

Wang, editors, ASIACRYPT, volume 7073 of Lecture

Notes in Computer Science, pages 344–371. Springer,

2011.

[8] G. Brassard, editor. Advances in Cryptology - CRYPTO

’89, 9th Annual International Cryptology Conference,

Santa Barbara, California, USA, Au- gust 20-24, 1989,

Proceedings, volume 435 of Lecture Notes in Computer

Science. Springer, 1990.

[9] A. Canteaut, editor. Fast Software Encryption - 19th

International Work- shop, FSE 2012, Washington, DC,

USA, March 19-21, 2012. Revised Selected Papers, volume

7549 of Lecture Notes in Computer Science. Springer,

2012.

[10] J. Daemen, L. R. Knudsen, and V. Rijmen. The block

cipher Square. In E. Biham, editor, FSE, volume 1267 of

Lecture Notes in Computer Science, pages 149–165.

Springer, 1997.

[11] J. Daemen and V. Rijmen. The wide trail design strategy.

In B. Honary, editor, IMA Int. Conf., volume 2260 of

Lecture Notes in Computer Science, pages 222–238.

Springer, 2001.

[12] I. Damg ̊ard. A design principle for hash functions. In

Brassard [8], pages 416–427.

[13] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F.

Mendel, C. Rechberger, M. Schlaffer, and S. S. Thomsen.

Grøstl–a sha-3 candidate. Submission to NIST, 2008.

[14] H. Gilbert and T. Peyrin. Super-Sbox cryptanalysis:

Improved attacks for AES-like permutations. In Hong and

Iwata [15], pages 365–383.

[15] S. Hong and T. Iwata, editors. Fast Software Encryption,

17th International Workshop, FSE 2010, Seoul, Korea,

February 7-10, 2010, Revised Selected Papers, volume

6147 of Lecture Notes in Computer Science. Springer,

2010.

[16] J. Jean, M. Naya-Plasencia, and T. Peyrin. Improved

rebound attack on the finalist grøstl. In Canteaut [9], pages

110–126.

[17] A. Joux. Multicollisions in iterated hash functions.

application to cascaded constructions. In M. K. Franklin,

editor, CRYPTO, volume 3152 of Lecture Notes in

Computer Science, pages 306–316. Springer, 2004.

[18] J. Kelsey and T. Kohno. Herding hash functions and the

Nostradamus attack. In S.Vaudenay, editor, EUROCRYPT,

volume 4004 of Lecture Notes in Computer Science, pages

183–200. Springer, 2006.

[19] J. Kelsey and B. Schneier. Second preimages on n-bit hash

functions for much less than 2n work. In R. Cramer, editor,

EUROCRYPT, volume 3494 of Lecture Notes in Computer

Science, pages 474–490. Springer, 2005.

[20] D. Khovratovich and I. Nikolic. Rotational cryptanalysis of

ARX. In Hong and Iwata, pages 333–346.

[21] L. R. Knudsen. Truncated and higher order differentials. In

B. Preneel, editor, FSE, volume 1008 of Lecture Notes in

Computer Science, pages 196–211. Springer, 1994.

[22] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and

M. Schla ̈ffer. Rebound distinguishers: Results on the full

Whirlpool compression func- tion. In M. Matsui, editor,

ASIACRYPT, volume 5912 of Lecture Notes in Computer

Science, pages 126–143. Springer, 2009.

[23] S. Lucks. A failure-friendly design principle for hash

functions. In B. K. Roy, editor, ASIACRYPT, volume 3788

of Lecture Notes in Computer Science, pages 474–494.

Springer, 2005.

[24] M. Matsui. Linear cryptoanalysis method for DES cipher.

In T. Helleseth, editor, EUROCRYPT, volume 765 of

Lecture Notes in Computer Science, pages 386–397.

Springer, 1993.

[25] F. Mendel, C. Rechberger, M. Schla ̈ffer, and S. S.

Thomsen. The Rebound attack: Cryptanalysis of reduced

Whirlpool and Grøstl. In O. Dunkelman, editor, FSE,

volume 5665 of Lecture Notes in Computer Science, pages

260–276. Springer, 2009.

[26] R. C. Merkle. One way hash functions and DES. In

Brassard [8], pages 428–446.

[27] National Institute of Standards and Technology.

Cryptographic hash al- gorithm competition.

http://csrc.nist.gov/groups/ST/hash/sha-3/ index.html.

[28] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions

based on block ciphers: A synthetic approach. In D. R.

Stinson, editor, CRYPTO, volume 773 of Lecture Notes in

Computer Science, pages 368–378. Springer, 1993.

[29] S. Wu, D. Feng, W. Wu, J. Guo, L. Dong, and J. Zou.

(Pseudo) preimage attack on round-reduced Grøstl hash

function and others. In Canteaut [9], pages 127–145.

[30] Wang, Xiaoyun, Hongbo Yu, and Yiqun Lisa Yin.

"Efficient collision search attacks on SHA-0." Advances in

Cryptology–CRYPTO 2005. Springer Berlin Heidelberg,

2005.

[31] Nandi, M. and S. Paul (2010). "Speeding up the wide-pipe:

Secure and fast hashing." Progress in Cryptology-

INDOCRYPT 2010: 144-162.

[32] Eli Biham and Orr Dunkelman, "A Framework for Iterative

Hash Functions - HAIFA," Cryptology ePrint Archive,

2007. [Online]. http://eprint.iacr.org/2007/278

http://eprint.iacr.org/2007/278

