Evaluation of various leakage current paths with different switching conditions

Khan, M.N.H., Gunawan, T.S., Rahman, M.T., Khan, S.
Electrical and Computer Engineering, International Islamic University Malaysia (IIUM), P.O. Box 10, Kuala Lumpur, Malaysia

Abstract
The Photovoltaic (PV) panel is the arrangement of solar cells that becoming famous in the world for commercial electric power market via transformer-less topology. However, non-existing galvanic isolation is the biggest problem occurred in the whole system and is known as leakage issue. In this paper, different paths of leakage current were analyzed with various wave shapes and ranges. Furthermore, it was also verified using DC decoupling and AC decoupling with full bridge rectifier. Moreover, the EMC filter and high range load were used to evaluate the performance. Moreover, here also shown the transfer function of EMC filter with its simulated figure. © 2014 IEEE.

Author keywords
AC decoupling, DC coupling, EMC filter, Leakage current (LC), Pulse Width Modulation (PWM)

Indexed keywords
Engineering controlled terms: Bridge circuits, Counting circuits, Electromagnetic compatibility, Leakage currents, Modulation, Power markets, Solar cells, Solar power generation, Voltage control

DC coupling, DC-decoupling, Electric power markets, Full bridge rectifier, Galvanic isolation, High ranges, Photovoltaic panels, Switching conditions

Engineering main heading: Pulse width modulation

DOI: 10.1109/ICCCE.2014.83
Document Type: Conference Paper
References (10)

1. Tamyurek, B., Kirimer, B.
 An interleaved flyback inverter for residential photovoltaic applications
 ISBN: 978-147990116-6
doi: 10.1109/EPE.2013.6634424
 View at Publisher

2. John, J., Selvakumar, A.I.
 A high efficiency single-phase transformerless PV inverter topology with reduced leakage current
 ISBN: 978-146736028-9
doi: 10.1109/ICPEC.2013.6527661
 View at Publisher

3. Kerekes, T., Teodorescu, R., Borup, U.
 Transformerless photovoltaic inverters connected to the grid
doi: 10.1109/APEX.2007.357753
 View at Publisher

4. Garg, A., Rajasekar, S., Gupta, R.
 A new modulation technique to eliminate leakage current in transformerless PV inverter
doi: 10.1109/SCES.2013.6547563
 View at Publisher

 A new proposal for ground leakage current reduction in transformerless grid-connected converters for photovoltaic plants
doi: 10.1109/IECON.2009.5414874
 View at Publisher
6 Su, X., Sun, Y., Lin, Y.
Analysis on leakage current in transformerless Single-Phase PV Inverters Connected to the Grid
ISBN: 978-142446255-1
doi: 10.1109/APPEEC.2011.5749071
View at Publisher

7 Buticchi, G., Barater, D., Lorenzani, E., Franceschini, G.
Digital control of actual grid-connected converters for ground leakage current reduction in PV transformerless systems
doi: 10.1109/TII.2012.2192284
View at Publisher

8 López, O., Freijedo, F.D., Yepes, A.G., Fernández-Comesaña, P., Malvar, J., Doval-Gandoy, J., Teodorescu, R.
Eliminating ground current in a transformerless photovoltaic application
doi: 10.1109/TEC.2009.2037810
View at Publisher

9 Khan, M.N.H., Khan, S., Gunawan, T.S., Shahid, Z.
DC-AC inverter with perspective of common mode and wave-shaping
ISBN: 978-147990843-1
doi: 10.1109/ICSIMA.2013.6717931
View at Publisher

10 Khan, M.N.H., Khan, S., Gunawan, T.S., Shahid, Z.
Wave shaping with reduced leakage current in transformer-less inverter
ISBN: 978-147990843-1
doi: 10.1109/ICSIMA.2013.6717970
View at Publisher