Photochromic behavior of spiropyrans: The effect of substituent

Nadir, N.a , Wahid, Z.b , Zainuddin, M.T.c , Mohamed Islam, N.Z.d

aDepartment of Mechatronics Engineering, International Islamic University Malaysia, P. O. Box 10, 50728 Kuala Lumpur, Malaysia
bDepartment of Science in Engineering, International Islamic University Malaysia, P. O. Box 10, 50728 Kuala Lumpur, Malaysia
cBiomedical Materials Section, Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim, Kedah, Malaysia

Abstract

Spiropyrans are among the most promising organic photochromic dyes. However, spiropyrans are very sensitive dyes and there are many independent factors that can affect the performance of these dyes. The effect of substituent on the optical absorption spectra, fading kinetic, and also the dye stability of spiropyrans in diphenyl ether by UV irradiation has been investigated. The 6-nitro BIPS displayed greater absorbance intensity of 0.740% at 600nm compared to 8-ethoxy-6-nitro BIPS of 0.651% at 620nm. Furthermore, 6-nitro BIPS is less stable as it has higher rate constant of 0.1003s⁻¹ and thus lower half-life time (50% decay of the photochromic effect) of 6.9s, in contrast to 8-ethoxy-6-nitro BIPS of 0.0594s⁻¹ and 11.7s respectively. © (2014) Trans Tech Publications, Switzerland.

Author keywords

Kinetic Photochromism Spiropyran Stability Substituent

Indexed keywords

Engineering controlled terms: Convergence of numerical methods Kinetics Rate constants

Cited by 2 documents

Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines
Balmond, E.L. , Tautges, B.K. , Faulkner, A.L.

Alternative analysis of 6-Nitro BIPS behaviour based on factorial design
Zaharah, W. , Najiah, N. , Mustafa, U.
(2016) Malaysian Journal of Mathematical Sciences
Absorbance intensity
Diphenyl ether
Photochromic behavior
Photochromic dyes
Photochromic effects
Spiropyans
Substituent
UV irradiation

Engineering main heading: Photochromism

ISSN: 10226680
ISBN: 978-303835086-6
Source Type: Book series
Original language: English

DOI: 10.4028/www.scientific.net/AMR.925.323
Document Type: Conference Paper
Sponsors:
Publisher: Trans Tech Publications

References (19)

1 Irie, M.
 Photochromism: Memories and switches - introduction

2 Pościk, A., Wandelt, B.
 Application of a photochromic dye in an automatic welding filter
 doi: 10.1080/10803548.2009.11076805
 View at Publisher

3 Tarkka, R.M., Talbot, M.E., Brady, D.J., Schuster, G.B.
 Holographic storage in a near-ir sensitive photochromic dye
 doi: 10.1016/0030-4018(94)90737-4
 View at Publisher

4 Xue, S.S., Manivannan, G., Lessard, R.A.
 Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films
 doi: 10.1016/0040-6090(94)90325-5
 View at Publisher
 Tunable photochromism of spirobenzopyran via selective metal ion coordination: An efficient visual and ratioing fluorescent probe for divalent copper ion
 doi: 10.1021/ac800072y

6. Yagi, S., Nakamura, S., Watanabe, D., Nakazumi, H.
 Colorimetric sensing of metal ions by bis(spiropyran) podands: Towards naked-eye detection of alkaline earth metal ions
 doi: 10.1016/j.dyepig.2008.05.012

 Photochromic hybrid sol-gel films containing naphthopyrans
 doi: 10.1007/s10971-010-2295-5

8. Schulze, G., Franke, K.J., Pascual, J.I.
 Induction of a photostationary ring-opening-ring-closing state of spiropyran monolayers on the semimetallic Bi(110) surface
 doi: 10.1103/PhysRevLett.109.026102

 The primary photochemical reaction step of unsubstituted indolino-spiropyrans
 doi: 10.1351/pac199062081483

10. Satoh, T., Sumaru, K., Takagi, T., Takai, K., Kanamori, T.
 Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions
 doi: 10.1039/c0cp01989e

 Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazine-doped polymer films
Guglielmetti, R.
4n+2 systems: Spiropyrans
in: H. Dürr, H. Bouas-Laurent (Eds.), Elsevier, Amsterdam

McGarvey, D.J.
Industry-linked context-based chemistry practicals

Comprehensive theoretical study of the conversion reactions of spiropyrans: Substituent and solvent effects
doi: 10.1021/jp0488867

Keum, S.-R., Lee, K.-B., Kazmaier, P.M., Buncel, E.
A novel method for measurement of the merocyanine-spiropyran interconversion in non-activated 1, 3, 3-trimethylspiro- (2H-1-benzopyran-2, 2′-indoline) derivatives
doi: 10.1016/S0040-4039(00)79953-9

Barachevsky, V.A.
Photofluorochromic spirocompounds and their application
doi: 10.1023/A:1009403411765

Przywztejn, H.E., Negri, R.M.
An experiment on photochromism and kinetics for the undergraduate laboratory

Shen, K., Jae, H.K., Go, W.K., Min, J.C., Sang, K.L., Dong, H.C.
Photochromic behavior and its stability of a new bifunctional dye composed of spirobenzopyran and a cinnamoyl moiety

Photochromic behavior of spiropyran in the photoreactive polymer containing chalcone moieties

© Copyright 2014 Elsevier B.V., All rights reserved.
<table>
<thead>
<tr>
<th>About Scopus</th>
<th>Language</th>
<th>Customer Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Scopus</td>
<td>日本語に切り替える</td>
<td>Help</td>
</tr>
<tr>
<td>Content coverage</td>
<td>切換到簡体中文</td>
<td></td>
</tr>
<tr>
<td>Scopus blog</td>
<td>切換到繁體中文</td>
<td></td>
</tr>
<tr>
<td>Scopus API</td>
<td>Русский язык</td>
<td>Contact us</td>
</tr>
<tr>
<td>Privacy matters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELSEVIER

Terms and conditions Privacy policy

Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Cookies are set by this site. To decline them or learn more, visit our Cookies page.