Feasibility of microchannel heat sink fabrication using low speed Micro End-Mill and Wire-Cut EDM

Authors:

ISLAM M.F SEDER

SHUGATA AHMED

MIRGHANI I. AHMED

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia.

2. Methodology and machining

3. RESULTS AND DISCUSSIONS

Moore, Gordon E., Cramming more components onto integrated circuits, Electronics Magazine (1965), p. 4.

Classical air cooling

Low heat transfer coefficient

Micro-channel heat sink

Large surface-to-volume ratio

Thermal boundary layer development

Higher pressure drop

Definition of micro-channel

Author	Parameter	Range
Mehendale and Jacobi (2000)	Hydraulic diameter	1 - 100 µm
Kandlikar et al. (2001)	Hydraulic diameter	50 - 600 μm
Kew and Cornwell (1997)	Confinement number	≥ 0.5

Double-layer micro-channel

Invented by Vafai and Zhu (1997)

Provide more coolant in the upper layer

More uniform surface temperature distribution

Absence of flow boiling in DL-MCHS

K. Vafai, L. Zhu, Analysis of two-layered micro-channel heat sink concept in electronic cooling, International Journal of Heat and Mass Transfer, vol. 42, pp. 2287-2297, 1999.

At the experimental and manufacturing level, few studies concentrated on DL-MCHS fabrication specially the metallic-based one. One potential reason behind a remarkable few experimental studies of DL-MC is the difficulty in fabrication

S. S. Bertsch, E.A. Groll, S.V. Garimella, Effect of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels, Int. J. of Multiphase Flow, vol. 35 (2009) pp. 142-154.

Fabrication processes can be grouped into two groups

1-Conventional process : is an extend to the macro-manufacturing concept like computer numerical controlled (CNC) machining ,

2-Non-conventional process that depend on chemical reactions such as X-ray lithography, deep reactive ion etching, deep UV lithography, electrical discharge machining (EDM) and laser machining

Increases after ONB

Decreases after CHF

Y. Wang, K. Sefiane, Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating, Int. J. of Heat and Mass Transfer , vol. 55 (2012), pp.2235-2243.

Methodology

Conventional (tool-based) micro-machining has advantages over a lithography technology in terms of cost effectiveness, efficiency and productivity

Moreover, different fabrication techniques produce specific geometrical shapes (rectangular, triangular, rounded-corner and ect.) those influence the overall thermal performance and pressure drop.

EDM-wire cut technology and End-mill machining are the only two available methods to manufacture microchannel with given dimensions and chosen material

Methodology

wire-cut EDM and low speed Micro End-Mill processes are needed to be addressed for DL-MC machining in two main domains:

(1) geometry variation and

(2) surface integrity and burr formation

MATHEMATICAL MODELING

Machines

Multi-Purpose Miniature Machine

Wire cut EDM machine

Surface roughness measuring machine (WYK) is utilized to measure the value of surface roughness Ra

Micro-tool and micro-channel substrate material

Fig 2: Different micro-diameter end mill

Machining conditions

Table 1 : Machining condition in micro End-Mill machine:

Cutting speed	spindle speed	width of cut (tool diameter)	depth of cut
0.5 mm/min	1000 rpm	200 µm	100 µm
1 mm /min	1500 rpm	300 µm	200 µm
2 mm /min	2000 rpm	400 µm	300 µm
3 mm /min	2500 rpm	500 μm	400 µm
4 mm /min	3000 rpm		500 µm

Table 2:-Machining conditions in EDM wire cut

Rate feed cutting	Wire feed rate speed
2 mm/min	10 mm/s
4 mm/min	12 mm/s
6 mm/min	14mm/s
8 mm/min	
10 mm/min	
12 mm/min	
14 mm/min	

RESULTS, Burr formation

fig3.a:From lift , top burr formation for (0.5, 1,2 and 3 mm/min) cutting speed at at 3000 rpm and 400 μm tool diameter

Fig 3.b : From lift , top burr formation for (500,400,300 and 200 μm) tool diameter at 1 mm/min cutting speed and 3000 μm spindle speed

Fig 3.b: From lift, top burr formation for (3000, 2500, 2000 and 1500 rpm) spindle speed at 1 mm/min speed and 400 μ m tool diameter.

RESULTS, Burr formation

Fig 4.a From lift, entrance burr formation for (0.5, 1,2 and 3 mm/min) cutting speed at 3000 rpm and 400 μm tool diameter

From lift, top burr formation for (3000 and 2000 rpm) spindle speed at 1 mm/min speed and 400 μ m tool diameter.

Fig 5: Microchannel sample before and after cleaning using tradition sand paper.

Fig 6. Top and side view of DL-MC fabricated by wire-cut EDM

Surface integrity

Figure 7.a : Ra with Cutting speed variation

Fig 7.b Ra with spindle speed variation

Fig 7.c Ra with tool diameter variation

Fig. 8 measured surface roughness Ra for wire-cut EDM process as a function of feed rate cutting and wire diameter .

Rounded corners shape

Rectangular shape

Double layer microchannel

Conclusion

 Both EDM wire cut and micro End mill can produce microchannel heat sink

• Careful consideration should be taken for the speed of the tools and wire cut.

THANK YOU