Effect of dephasing on superadiabatic three-level quantum driving

Issufa, Y.H., Messikh, A.

Department of Computer Science, Kuala Lumpur Institute of Information and Communication Technology, IIUM, Kuala Lumpur, Malaysia

Abstract

The robustness of the three-level transitionless quantum driving proposed by Giannelli and Arimondo [L. Giannelli and E. Arimondo, Phys. Rev. A 89, 033419 (2014);PLRAAN1050-294710.1103/PhysRevA.89.033419] is investigated. In the case when the excited state is barely populated during the evolution, its decay rate has little effect on the adiabatic population transfer. However, the dephasing which is due to collisions or phase fluctuations of the driving fields will produce a significant effect on the evolution. We found that the dephasing reduces the performance of the population transfer and the fidelity can be far below the quantum computation target even for small dephasing rates. © 2014 American Physical Society.

Indexed keywords

Engineering controlled terms:

- Adiabatic population transfer
- Decaying rate
- Dephasing
- Dephasing rates
- Driving field
- Phase fluctuation
- Population transfer
- Three-level

Engineering main heading:

- Excited states

ISSN: 10502947
CODEN: PLRAA
Source Type: Journal
Original language: English

DOI: 10.1103/PhysRevA.90.055402
Document Type: Article
Publisher: American Physical Society

Cited by 3 documents

Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics

Wu, Q.-C., Chen, Y.-H., Huang, B.-H.
(2016) Optics Express

Finite-time Landau-Zener processes and counterdiabatic driving in open systems: Beyond Born, Markov, and rotating-wave approximations

Sun, Z., Zhou, L., Xiao, G.
(2016) Physical Review A

Superadiabatic STIRAP: Population transfer and quantum rotation gates

Issufa, Y.H., Messikh, A.
(2016) Communications in Computer and Information Science