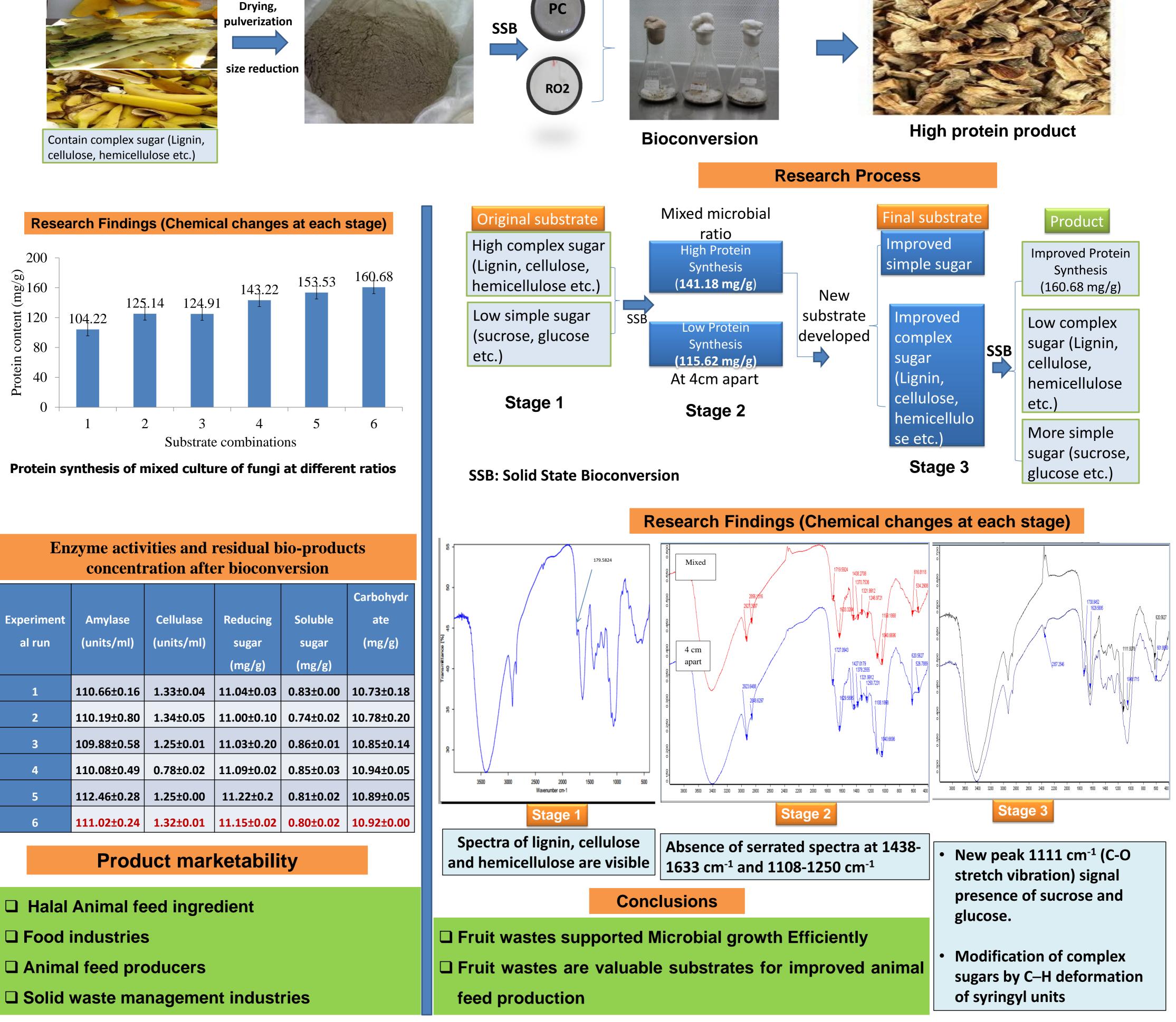


A Fermentative Approach to Ameliorating Solid Waste Challenges within Food and Hospitality Industry


Parveen Jamal, Olorunnisola Kola Saheed, Mohamed Ismail Abdul Karim, Md. **Zahagir Alam and Suleyman Aremu Muyibi Kulliyyah of Engineering, International Islamic University Malaysia** Phone: +60133041403 Fax: +60 3 61964442, E-mail: jparveen@iium.edu.my

Abstract: Solid wastes emanating from food and hospitality domains constitute environmental challenges and their holistic management remained inevitable. Solid state bioconversion process involving mixed culture of microbes was conducted for 7 days. Bio-product synthesis by the microorganisms and bio-degradation extent of fruit peels' components were analyzed for chemical and structural changes. Chemical analysis showed improved protein enrichment when microbes were mixed together at different ratios (141.18 mg/g) compared with 4 cm apart (115.62 mg/g). Through substrate reformulation, fermentable sugar composition rose to 500.99 mg/g and protein enrichment increased to 160.68 mg/g, cellulase activity was 1.33 \pm 0.04 units/ml and α -amylase activity of 112.46±0.28 units/ml was synthesized. Analysis of reformulated substrates indicated presence of more metabolizable sugar while FT-IR analysis revealed immense modifications and consumption of complex sugars (cellulose, hemicellulose and lignin) by selected filamentous fungi.

Fruit peels

Lypenment	Alliylase	Cellulase	Reducing	JUIUDIE	ale
al run	(units/ml)	(units/ml)	sugar	sugar	(mg/g)
			(mg/g)	(mg/g)	
1	110.66±0.16	1.33±0.04	11.04±0.03	0.83±0.00	10.73±0.18
2	110.19±0.80	1.34±0.05	11.00±0.10	0.74±0.02	10.78±0.20
3	109.88±0.58	1.25±0.01	11.03±0.20	0.86±0.01	10.85±0.14
4	110.08±0.49	0.78±0.02	11.09±0.02	0.85±0.03	10.94±0.05
5	112.46±0.28	1.25±0.00	11.22±0.2	0.81±0.02	10.89±0.05
6	111.02±0.24	1.32±0.01	11.15±0.02	0.80±0.02	10.92±0.00