Optimization of CNFET Op amp for high frequency operation in Sub-10-nm node

Rafique, M.Z.E., Mahmud, A., Mominuzzaman, S.M.
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

Abstract

This paper presents optimization of various parameters of carbon nanotube field effect transistor (CNFET) based op amp in sub-10 nm node for high frequency operation. Parameters such as, channel length, gate oxide thickness, gate dielectric constant, spacer doping, spacer dielectric constant and pitch, are optimized. For high frequency operation of op amp, optimum values of CNFET parameters are found to be 10 nm channel length, 10 dielectric constant of gate oxide, 3 nm gate oxide thickness, 5 nm pitch, zero source/drain doping concentration, 4 dielectric constant of spacer oxide. Performance of CNFET op amp incorporating these optimum values is investigated and compared with previous work. Obtained results reveals significant differences among previously designed Si CMOS op amp, 32 nm CNFET and the sub-10-nm CNFET op amp investigated here. © 2016 IEEE.

Author keywords

Carbon nanotube field effect transistor (CNFET) Channel length Gate oxide thickness Spacer dielectric

Indexed keywords

Engineering controlled terms: Carbon nanotube field effect transistors Carbon nanotubes Gate dielectrics Gates (transistor) High frequency amplifiers Nanosensors Nanotechnology Nanotubes Operational amplifiers Yarn

Cited by 0 documents

Inform me when this document is cited in Scopus:

Set citation alert Set citation feed

Related documents

Comparative study on the characteristics among few-walled carbon nanotube array field-effect transistors

Efficient radix- r adders for nanoelectronics

Effects of Temperature Dependence of Energy Bandgap on I-V Characteristics in CNTFETs Models

View all related documents based on references
Engineering main heading: Field effect transistors

ISBN: 978-150902963-1
Source Type: Conference Proceeding
Original language: English

References (23)

1. Dürkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.
 Extraordinary Mobility in Semiconducting Carbon Nanotubes
 doi: 10.1021/nl034841q
 View at Publisher

2. O'Connell, M.J.
 Taylor & Francis

 Ballistic carbon nanotube field-effect transistors
 doi: 10.1038/nature01797
 View at Publisher

 Self-aligned carbon nanotube transistors with charge transfer doping
 doi: 10.1063/1.1888054
 View at Publisher

https://www.scopus.com/record/display.uri?eid=2-s2.0-85016169720&origin=resultslist&sort=plf-f&src=s&st1=Optimum+performance+of+carbon+nano...
5. Paul, B.C., Fujita, S., Okajima, M., Lee, T.
Modeling and analysis of circuit performance of ballistic CNFET
ISBN: 1595933816; 1595933816; 978-159593381-2
doi: 10.1145/1146909.1147092

A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - Part I: Model of the intrinsic channel region
doi: 10.1109/TED.2007.909030

A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - Part II: Full device model and circuit performance benchmarking
doi: 10.1109/TED.2007.909043

8. Ali Usmani, F., Hasan, M.
Carbon nanotube field effect transistors for high performance analog applications: An optimum design approach

Design optimization of high frequency op amp using 32 nm CNFET
ISBN: 978-142446279-7
doi: 10.1109/ICECE.2010.5700670

10. Ajit, J.S., Kim, Y.-B., Choi, M.
Performance assessment of analog circuits with carbon nanotube FET (CNFET)
ISBN: 978-145030012-4
doi: 10.1145/1785481.1785521

11. Lin, S., Kim, Y.-B., Lombardi, F.
CNTFET-based design of ternary logic gates and arithmetic circuits
doi: 10.1109/TNANO.2009.2036845
http://pubs.acs.org/journal/ancac3
doi: 10.1021/nn503627h

doi: 10.1109/ICSICT.2012.6467737

doi: 10.2174/22106812112029999003

ISBN: 978-147999985-9
doi: 10.1109/CONECCT.2015.7383869

ISBN: 978-147991758-7
doi: 10.1109/SSD.2015.7348239

doi: 10.1109/TED.2015.2457453

© Copyright 2017 Elsevier B.V., All rights reserved.