13th International Conference on Indoor Air Quality and Climate 2014

Hong Kong
7-12 July 2014

Volume 1 of 6

Topics included in Volume I:

Indoor air chemistry
Indoor air physics
Indoor air microbiology
Indoor aerodynamics
Indoor transport phenomena
Health and indoor air epidemiology
List of contents

Indoor air chemistry

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali, Zulfiqar, et al.</td>
<td>Measurement of NO2 inside and outside various educational institutes of Lahore, Pakistan</td>
<td>1</td>
</tr>
<tr>
<td>Buechlein, Melissa, et al.</td>
<td>Skin uptake of gas phase methamphetamine: effect of clothing</td>
<td>6</td>
</tr>
<tr>
<td>Carslaw, Nicola</td>
<td>A modelling study of limonene oxidation products following cleaning activities</td>
<td>9</td>
</tr>
<tr>
<td>Chatsuvan, Thabtim, et al.</td>
<td>Effects of relative humidity and surface soiling on the sorption of organic pollutants to polymeric material</td>
<td>20</td>
</tr>
<tr>
<td>Gall, Elliott, et al.</td>
<td>Sensitivity analysis of ozone-material modeling for porous materials in indoor environments</td>
<td>28</td>
</tr>
<tr>
<td>Gligorovski, Sasho, et al.</td>
<td>Photolysis of nitrous acid (HONO) emitted by a burning candle as a source of high levels of hydroxyl radicals (OH)</td>
<td>34</td>
</tr>
<tr>
<td>Gligorovski, Sasho, et al.</td>
<td>Light-induced breakdown of nitrous acid (HONO) as a source of unexpectedly high levels of hydroxyl radical (OH)</td>
<td>38</td>
</tr>
<tr>
<td>Ho, Kinfai, et al.</td>
<td>The chemical properties and toxicology of fine particle (PM2.5) from incense burning in Hong Kong</td>
<td>41</td>
</tr>
<tr>
<td>Huang, Yu, et al.</td>
<td>Effect of NH3 on the formation of indoor secondary pollutants from ozone/monoterpenes reactions</td>
<td>44</td>
</tr>
<tr>
<td>Ito, Kazuhide, et al.</td>
<td>Small test chamber experiment and modeling of photocatalytic oxidation of volatile organic compounds under indoor environmental conditions</td>
<td>47</td>
</tr>
<tr>
<td>Kagi, Naoki, et al.</td>
<td>DEHP adsorption mechanisms on airborne particle surface in indoor air by chamber study</td>
<td>54</td>
</tr>
<tr>
<td>Khurshid, Shahana, et al.</td>
<td>The role of ozone and terpenes on the concentration of indoor particulate reactive oxygen species</td>
<td>62</td>
</tr>
<tr>
<td>Lee, Chia-Wei, et al.</td>
<td>Indoor air chemistry of ozone / smoke reaction in the guestroom</td>
<td>65</td>
</tr>
<tr>
<td>Lee, Seokyong, et al.</td>
<td>Potential exposure to nitrogen dioxide and nitrous acid in houses, Korea</td>
<td>69</td>
</tr>
<tr>
<td>Li, Hongwan, et al.</td>
<td>Adsorption capacity of methamphetamine in gypsum drywall</td>
<td>72</td>
</tr>
<tr>
<td>Lin, Chi-Chi, et al.</td>
<td>The study of BTEX and carbonyls emissions and ozone removal of green paints</td>
<td>75</td>
</tr>
<tr>
<td>Liu, Yu-Chun, et al.</td>
<td>Rising formaldehyde level is associated with the temperature in Taiwan residence</td>
<td>79</td>
</tr>
<tr>
<td>Mackenzie-Rae, Felix, et al.</td>
<td>Chamber study of α-phellandrene: indoor fragrant and ambient BVOC</td>
<td>83</td>
</tr>
<tr>
<td>Mendez, Maxence, et al.</td>
<td>Development and evaluation of inca-indoor – role of nitrogen dioxide surface reaction in the balance of nitrous acid</td>
<td>91</td>
</tr>
<tr>
<td>Mull, Birte, et al.</td>
<td>Photocatalytical degradation of selected volatile organic compounds in emission test chambers</td>
<td>98</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nakamura, Shunta, et al.</td>
<td>Novel method to measure emission rate of VOCs-emission of formaldehyde</td>
<td></td>
</tr>
<tr>
<td>Noguchi, Miyuki, et al.</td>
<td>Formation of secondary fine particles and gaseous compounds through the ozonolysis of α-pinene - Effect of coexisting nitrogen monoxide (NO)</td>
<td></td>
</tr>
<tr>
<td>Rim, Donghyun, et al.</td>
<td>Ozone reaction with building materials: effects of diurnal variation and environmental conditions</td>
<td></td>
</tr>
<tr>
<td>Shu, Shi, et al.</td>
<td>Large agglomerates formed from ozone reactions with surface bound alphaterpineol and dihydromyrcenol</td>
<td></td>
</tr>
<tr>
<td>Tsuji, Isamu, et al.</td>
<td>Experimental and numerical study for developing decomposition model of hydrogen peroxide on building materials</td>
<td></td>
</tr>
<tr>
<td>Waring, Michael, et al.</td>
<td>Role of different oxidants on VOC conversion in residences and offices</td>
<td></td>
</tr>
<tr>
<td>Yamamoto, Kiyoshi, et al.</td>
<td>Performance evaluation of reduction in VOC concentration by photocatalytic building materials in a real-scale chamber</td>
<td></td>
</tr>
<tr>
<td>Ye, Wei, et al.</td>
<td>Partially-irreversible sorption of formaldehyde in polymeric materials</td>
<td></td>
</tr>
<tr>
<td>Youssefi, Somayeh, et al.</td>
<td>Transient secondary organic aerosol formation from d-limonene and α-pinene ozonolysis in indoor environments</td>
<td></td>
</tr>
<tr>
<td>Indoor air physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, Chun-Chuan, et al.</td>
<td>The influence of humidity in modelling buoyancy-driven indoor ventilation</td>
<td></td>
</tr>
<tr>
<td>Klanatsky, Peter, et al.</td>
<td>Influence of the moisture storage capacity of building materials on relative humidity in indoor environments</td>
<td></td>
</tr>
<tr>
<td>Li, Yongjiang, et al.</td>
<td>Analysis on pollutant distribution from ground source under typical architectural layouts</td>
<td></td>
</tr>
<tr>
<td>Indoor air microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams, Rachel, et al.</td>
<td>Characterizing microbes in occupied spaces: environmental chamber study of human emission factors</td>
<td></td>
</tr>
<tr>
<td>Bhangar, Seema, et al.</td>
<td>Human emissions of size-resolved fluorescent biological aerosol particles indoors</td>
<td></td>
</tr>
<tr>
<td>Caya, Alexandra, et al.</td>
<td>Characterization of the microbial community aerosolized in showers</td>
<td></td>
</tr>
<tr>
<td>Chatterjee, Kanistha, et al.</td>
<td>Assessing bacterial diversity in moisture-damaged buildings using pyrosequencing</td>
<td></td>
</tr>
<tr>
<td>Chen, Yen-Chi, et al.</td>
<td>A study on evaluating fungal growth and influential factors on building materials</td>
<td></td>
</tr>
<tr>
<td>Dedesco, Sandra, et al.</td>
<td>Using carbon dioxide and doorway beam-break sensors to determine occupancy in hospital patient rooms</td>
<td></td>
</tr>
<tr>
<td>Dumala, Slawomira, et al.</td>
<td>The effectiveness of the modules with UV lamps in ventilation systems</td>
<td></td>
</tr>
<tr>
<td>Gilbert, Jack, et al.</td>
<td>The Hospital Microbiome Project</td>
<td></td>
</tr>
<tr>
<td>Gong, Jia-You, et al.</td>
<td>For fungal spores, TiO2 nanoparticles may be a sun block than a</td>
<td></td>
</tr>
</tbody>
</table>
Handorean, Alina, et al.
Airborne biopolymer analyses to assess the performance of a modern building complex in reducing exposures to proximal wildfire pollution 217

Hayashi, Motoya, et al.
A field study on biological pollution and its environmental factors - annual change of mould and mite in the indoor air and on interior surface 221

Hospodsky, Denina, et al.
Influence of occupancy and building characteristics on the source strengths of bacteria and fungi in the classroom air of primary schools 229

Hyvärinen, Anne, et al.
A longitudinal assessment of microbial exposures in schools in relation to moisture damage and dampness 232

Ikeda, Koichi, et al.
Studies on microbial contamination control of the evaporative humidifier for HVAC system using electrolyzed water 235

Kang, Yoonkyung, et al.
The assessment of microbial contamination on energy recovery ventilation devices in the airtight-house 243

Keady, Patricia, et al.
Environmental, occupancy, and seasonal factors associated with the microorganisms found in single family residences 250

Kuo, Yu-Mei, et al.
Characterization of an inkjet aerosol generator for bioaerosol survivability study 258

Lawniczek-Walczyk, Anna, et al.
Microbial particles released from biomass in modern storage and processing rooms at power plants 260

Lee, Shu-An, et al.
The effect of relative humidity during fungal growth on fungal release in the air 263

Leung, Marcus, et al.
Using next-generation sequencing technology to determine the metagenome of the Hong Kong subway network 266

Levin, Hal, et al.
Conceptual framework for building science in indoor microbiome 273

Levin, Hal
Indoor microbiome: literature on building science connections 276

Lewinska, Anna, et al.
Novel DNA barcodes for detection, identification and tracking of stachybotrys and chaetomium species 281

Loh, Tze Ping, et al.
A novel application of high-speed, real-time shadowgraph imaging: demonstrating micro-droplet ejection from pipette tips and potential for contamination in molecular diagnostic laboratories 289

Luan, Yameng, et al.
The effect of limonene and ozone reactions on fractional exhaled nitric oxide. A pilot study 295

Luhung, Irvan, et al.
DNA-based protocol optimization for bioaerosol sampling in an urban tropical environment 301

Luongo, Julia, et al.
Applying ultraviolet germicidal irradiation to HVAC heat exchangers to reduce biofouling and improve heat transfer capability 304

Macher, Janet, et al.
Indoor dampness and mold as indicators of respiratory health risks, Part 5: comparison of a moisture meter and water activity sensor to determine the dampness of gypsum wallboard 310

Macher, Janet, et al.
Indoor dampness and mold as indicators of respiratory health risks, Part 4: higher measured moisture in homes with qualitative evidence of dampness or mold 317

Maestre, Juan, et al.
Mapping the UT-Austin microbiome: exploring the outdoor to indoor gradient 323

Mensah-Attipoe,
Comparison of methods for assessing growth of fungi on building materials 326
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacob, et al.</td>
<td>Seasonal variation of indoor bacterial aerosols in naturally ventilated urban classrooms with high outdoor particulate matter concentrations</td>
<td>329</td>
</tr>
<tr>
<td>Miller, Dana, et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunez, Maria</td>
<td>What are indoor microbial communities? An ecological approach</td>
<td>332</td>
</tr>
<tr>
<td>O'donnell, Anne</td>
<td>The mould detection canine, an essential tool in the compliance of North American Guidelines with regards to mould detection</td>
<td>338</td>
</tr>
<tr>
<td>Osawa, Haruki, et al.</td>
<td>A field study on biological pollution and its environmental factors-mould and mite on the interior surface in winter and summer</td>
<td>345</td>
</tr>
<tr>
<td>Ramos, Tiffanie, et al.</td>
<td>Building science measurements in the Hospital Microbiome Project</td>
<td>353</td>
</tr>
<tr>
<td>Reiman, Marjut, et al.</td>
<td>Microbial flora related to moisture damages in buildings</td>
<td>356</td>
</tr>
<tr>
<td>Reponen, Tiina, et al.</td>
<td>Characterization of charge in airborne fungal spores</td>
<td>359</td>
</tr>
<tr>
<td>Siegel, Jeffrey, et al.</td>
<td>Impact of building science parameters on microbial communities on indoor surfaces</td>
<td>362</td>
</tr>
<tr>
<td>Spilak, Michal, et al.</td>
<td>Association between dwelling characteristics and concentrations of bacteria, endotoxin and fungi in settling dust</td>
<td>365</td>
</tr>
<tr>
<td>Stephens, Brent, et al.</td>
<td>Open source building science sensors for indoor microbiology</td>
<td>372</td>
</tr>
<tr>
<td>Takehiro, Eriko, et al.</td>
<td>Study of prompt mould evaluation method for indoor air quality</td>
<td>375</td>
</tr>
<tr>
<td>Tsai, Ming Chien, et al.</td>
<td>The effect of support and heat treatment temperature on the antifungal efficiency of nano-silver</td>
<td>383</td>
</tr>
<tr>
<td>Wu, Yan, et al.</td>
<td>Characterizing the indoor microbiome in an office in Singapore before and after cleaning to address a mold problem</td>
<td>386</td>
</tr>
<tr>
<td>Xie, Jiarong, et al.</td>
<td>Exhaled nitric oxide and acute PM2.5 exposure in healthy adults</td>
<td>390</td>
</tr>
<tr>
<td>Zare, Mahnaz, et al.</td>
<td>Equilibrium relative humidity measurements on common office surfaces</td>
<td>395</td>
</tr>
<tr>
<td>Zhang, Yun, et al.</td>
<td>The effect of air velocity, temperature and relative humidity on the microorganism growth on air filtration media</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Indoor aerodynamics</td>
<td></td>
</tr>
<tr>
<td>Awamura, Yuta, et al.</td>
<td>Prediction of deodorant effect and change in particle size distribution of deodorant water mist sprayed downward by two-fluid nozzle</td>
<td>406</td>
</tr>
<tr>
<td>Licina, Dusan, et al.</td>
<td>Interaction of convective flow generated by human body with room ventilation flow: impact on transport of pollution to the breathing zone</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Indoor transport phenomena</td>
<td></td>
</tr>
<tr>
<td>Bi, Chenyang, et al.</td>
<td>The influence of temperature, ventilation and humidity on the fate and transport of indoor phthalates</td>
<td>421</td>
</tr>
<tr>
<td>Cherniakov, Evgeny, et al.</td>
<td>A numerical investigation of effects of a moving operator on airborne contamination removal in a cleanroom</td>
<td>424</td>
</tr>
<tr>
<td>Gunnarsen, Lars, et al.</td>
<td>Validation of simple method for determination of penetration of PCB in concrete</td>
<td>432</td>
</tr>
<tr>
<td>Hathway, Abigail, et al.</td>
<td>Towards understanding the role of human activity on indoor air flows: a case study of door motion based on both field and experimental activities</td>
<td>435</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Hsiao, Ta-Chih, et al.</td>
<td>Effect of dynamic shape factor on particle decay rate in test chamber</td>
<td>443</td>
</tr>
<tr>
<td>Khan, Amirul, et al.</td>
<td>A lattice Boltzmann based real-time Computational Fluid Dynamics (CFD) simulation of movement-induced indoor contaminant transport</td>
<td>448</td>
</tr>
<tr>
<td>Kwon, Soon-Bark, et al.</td>
<td>Distribution profile of airborne and surface microorganisms for a selected patient care area in a hospital</td>
<td>450</td>
</tr>
<tr>
<td>Leung, Wing Tong, et al.</td>
<td>Detachment of droplets from surfaces due to turbulent flow</td>
<td>453</td>
</tr>
<tr>
<td>Liang, Yirui, et al.</td>
<td>Indoor residential fate model of phthalate plasticizers</td>
<td>460</td>
</tr>
<tr>
<td>Liu, Cong, et al.</td>
<td>C-depth method to determine diffusion coefficient and partition coefficient of PCB in building materials</td>
<td>468</td>
</tr>
<tr>
<td>Liu, Shichao, et al.</td>
<td>A protected occupied zone ventilation system to prevent the transmission of coughed particles</td>
<td>474</td>
</tr>
<tr>
<td>Mu, Yutong, et al.</td>
<td>Coupling FVM and lattice Boltzmann method for pore scale investigation on volatile organic compounds emission process</td>
<td>481</td>
</tr>
<tr>
<td>Pan, Jiechen, et al.</td>
<td>Drying of paint and volatile residuals in the film</td>
<td>489</td>
</tr>
<tr>
<td>Poon, Carman, et al.</td>
<td>Size-resolved aerosol transport in a controlled two-zone environment</td>
<td>497</td>
</tr>
<tr>
<td>Saber, Esmail, et al.</td>
<td>Numerical modelling of an indoor space conditioned with low exergy cooling technologies in the tropics</td>
<td>503</td>
</tr>
<tr>
<td>Sagheby, S. Hossein, et al.</td>
<td>Numerical study of the dispersion of contaminants from a “cold” source in a low-velocity ventilated room</td>
<td>511</td>
</tr>
<tr>
<td>Shinohara, Naohide, et al.</td>
<td>Development of novel method to obtain the dermal exposure levels to SVOCs using PFS</td>
<td>518</td>
</tr>
<tr>
<td>Wang, Chunyi, et al.</td>
<td>Particle generation in HVAC systems due to ozone/terpene reactions</td>
<td>520</td>
</tr>
<tr>
<td>Wei, Jianjian, et al.</td>
<td>Evolution of the vortex ring and its role in particle transport</td>
<td>528</td>
</tr>
<tr>
<td>Wu, Yan, et al.</td>
<td>Numerical investigation of required mechanical exhaust rate to avoid expiration from open windows caused by buoyancy</td>
<td>538</td>
</tr>
<tr>
<td>Yan, Yihuan, et al.</td>
<td>Numerical study of passenger thermal effects on the transport characteristics of exhaled droplets in an airliner cabin</td>
<td>546</td>
</tr>
<tr>
<td>Yang, Shen, et al.</td>
<td>Impact of several factors on indoor pollutant distribution uniformity in a single room with mechanical and isothermal ventilation</td>
<td>554</td>
</tr>
</tbody>
</table>

Health and indoor air epidemiology

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azuma, Kenichi, et al.</td>
<td>Prevalence of and risk factors for nonspecific building-related symptoms in employees working in office buildings: relationships among indoor air quality, work environment, and occupational stress in summer and winter</td>
<td>562</td>
</tr>
<tr>
<td>Bhattacharjee, Suchismita, et al.</td>
<td>Association of indoor environmental quality of student residence halls with perceived health symptoms of the occupants</td>
<td>569</td>
</tr>
<tr>
<td>Chen, Nai-Tzu, et al.</td>
<td>Associations of total and culturable fungi indoors with 8-OHdG, allostatic load score, and SBS</td>
<td>577</td>
</tr>
<tr>
<td>Chuang, Hsiao Chi, et al.</td>
<td>Effects of subway particles on cardiovascular health among commuters in Taipei, Taiwan</td>
<td>580</td>
</tr>
</tbody>
</table>
Dannemiller, Karen, et al. Next generation DNA sequencing of indoor fungi to determine associations between fungal communities and asthma development and severity 583
Dijkstra, Nienke Elske, et al. Modern office related determinants of dry eye complaints — the officair study 586
Elholm, Grethe, et al. XDOZ; controlled human exposure to indoor air dust and ozone 589
Fan, Guangtao, et al. Study on the association between residential environmental quality and children’s health in Beijing 591
Fung, Cecilia, et al. Wheeze during the first 18 months of life: a prospective cohort study to explore the associations with indoor nitrogen dioxide, formaldehyde and family history of asthma 599
Grimes, Carl, et al. “Dampness” definition and research questions advanced by practitioner input 602
Hägerhed-Engman, Linda, et al. Early life exposure of self-reported mold odor is associated with asthma in children 10 years later 612
Hasegawa, Kenichi, et al. Indoor environmental problems and occupants' health in water-damaged homes due to tsunami disaster 615
Heederik, Dirk, et al. Dampness, bacterial and fungal components in dust in primary schools and respiratory health in school children across Europe 621
Hong, Seung-Cheol, et al. Investigation on the levels of exposure to radio frequency electromagnetic fields at youth's major living spaces 629
Hou, Jing, et al. Differences in urban and rural home environment and the association with children’s health in China 634
Huang, Chen, et al. Home environment, dwelling characteristics and pneumonia among Shanghai preschool children: a cross-sectional study 640
Hurrass, Julia, et al. Risk of olfactory effects and impairment of well-being resulting from mould exposure – results of a workshop of the annual conference of the German society of hygiene, environmental medicine and preventive medicine held in Freiburg, Germany, in 2012 648
Jinno, Hideto, et al. Japanese national survey of volatile organic compounds in residential air for the revision of the indoor air quality guidelines 656
Kaul, Nivedita, et al. Indoor air quality in different microenvironments and its impact on human respiratory health- a case study 658
Kim, Jinman, et al. The associated with allergy disease of children and concentration of bacteria in the daycare centers 664
Kim, Sunshin, et al. Exposure assessment to hydrofluoric acid by chemical accident in Gumi city, Korea – evacuation or staying at home 670
King, Marco-Felipe, et al. The role of surfaces in the transmission of bioaerosols from source to patient in hospital single and two-bed rooms 673
Kjeldsen, Birthe, et al. Classroom ventilation type and pupil learning 680
Kong, Xiangrui, et al. Report from an ongoing epidemiological investigation on the association between children’s health and home environmental factors in Tianjin, China 684
Lao, Xiangqian, et al. Prospective cohort study on health effects of school environmental air 687
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>al.</td>
<td>quality in Hong Kong school children</td>
<td>691</td>
</tr>
<tr>
<td>Lee, Seokyong, et al.</td>
<td>Exposure factors of Korean children - focusing on time-activity pattern and inhalation rate</td>
<td>694</td>
</tr>
<tr>
<td>Liu, Wei, et al.</td>
<td>Associations between asthma, related symptoms and ventilation in the sleeping room during night among Shanghai preschool children</td>
<td>698</td>
</tr>
<tr>
<td>Madureira, Joana, et al.</td>
<td>Adverse respiratory effects of indoor air pollution</td>
<td>698</td>
</tr>
<tr>
<td>Mahera, Shaily, et al.</td>
<td>Evaluation of mould growth risk wall assemblies with different hygrothermal properties</td>
<td>706</td>
</tr>
<tr>
<td>Mandal, Adhirath, et al.</td>
<td>Effect of indoor air on the health of restaurant workers- a case study</td>
<td>713</td>
</tr>
<tr>
<td>Matilainen, Markus, et al.</td>
<td>An analysis of questionnaire data on indoor environmental quality in schools and student health</td>
<td>719</td>
</tr>
<tr>
<td>Mendell, Mark</td>
<td>Indoor dampness and mold as indicators of respiratory health risks, part 2: a brief update on the epidemiologic evidence</td>
<td>722</td>
</tr>
<tr>
<td>Mendell, Mark, et al.</td>
<td>Indoor dampness and mold as indicators of respiratory health risks, part 3: a synthesis of published data on indoor measured moisture and health</td>
<td>727</td>
</tr>
<tr>
<td>Mendell, Mark, et al.</td>
<td>Indoor Dampness and Mold as Indicators of respiratory health risks, Part 1: developing evidence to support public health policy on dampness and mold</td>
<td>735</td>
</tr>
<tr>
<td>Mendes, Ana, et al.</td>
<td>Health and indoor air quality in elderly care centers in Portugal</td>
<td>741</td>
</tr>
<tr>
<td>Mori, Ikue, et al.</td>
<td>Renovation of houses with well-insulated windows - effect on physical activity of the elderly</td>
<td>745</td>
</tr>
<tr>
<td>Norbäck, Dan, et al.</td>
<td>Asthma, allergy and eczema among adults in multifamily houses in Stockholm (3HE-study)-associations with energy use, building characteristics, maintenance and home environment factors</td>
<td>749</td>
</tr>
<tr>
<td>Nygaard, Linette, et al.</td>
<td>The effects of radiant cooling versus convective cooling on human EYE tear film stability and blinking rate</td>
<td>752</td>
</tr>
<tr>
<td>Sadrizadeh, Sasan, et al.</td>
<td>Traffic patterns effects on surgical site infection in the operating room</td>
<td>765</td>
</tr>
<tr>
<td>Sadrizadeh, Sasan, et al.</td>
<td>Effect of a mobile LAF screen on particle distribution in an operating room</td>
<td>772</td>
</tr>
<tr>
<td>Shen, Li, et al.</td>
<td>Associations of allergic diseases and formaldehyde in bedroom air among preschool children in Shanghai</td>
<td>777</td>
</tr>
<tr>
<td>Shih, Han-Yu, et al.</td>
<td>The profile of children’s respiratory symptoms before and after the flooding event</td>
<td>783</td>
</tr>
<tr>
<td>Tahara, Maiko, et al.</td>
<td>Random sampling survey of indoor air total volatile organic compounds in Kanto region, Japan</td>
<td>786</td>
</tr>
<tr>
<td>Takaoka, Motoko, et al.</td>
<td>Sick building syndrome among junior high school students in Japan in relation to the home and school environment</td>
<td>788</td>
</tr>
<tr>
<td>Takayama, Naoto, et al.</td>
<td>Bathing and indoor thermal environment: modeling body temperature and preventing heat stroke</td>
<td>790</td>
</tr>
<tr>
<td>Tanaka-Kagawa, Toshiko, et al.</td>
<td>Activation of nociceptive transient receptor potential channels by antimicrobial agents/isothiazolinones in consumer products</td>
<td>795</td>
</tr>
</tbody>
</table>
Taubel, Martin, et al.
Quantitative PCR determination of microbes in relation to observed measures of mould in homes

Terschüren, Claudia, et al.
Environmental burden of disease due to second-hand smoke in Germany: results of the VegAS project

Tham, Kwok W, et al.
Effect of ozone initiated chemistry on physiological responses of tropically acclimatized subjects in a simulated office environment

Thiault, Guénaël, et al.
Investigations highlighting carbon monoxide

Umishio, Wataru, et al.
Impacts of indoor thermal environment and personal factors on home blood pressure in winter

Wang, Juan, et al.
Rhinitis, asthma and airway infections among adults in relation to the home environment in multifamily buildings in Sweden

Wang, Lifang, et al.
Housing characteristics and home environment in relation to allergic rhinitis among preschool children in Beijing, China: a cross-sectional study

Wang, Xueying, et al.
Associations between dwelling characteristics, home environment and allergic rhinitis among preschool children in Shanghai

Wiesmüller, Gerhard, et al.
Risk of toxic reactions to mould exposure – results of a workshop of the annual conference of the German society of hygiene, environmental medicine and preventive medicine held in Munich, Germany in 2011

Wong, Claudie, et al.
Exposure to household cleaning products and respiratory health effects in young school children

Xie, Shao-Hua, et al.
Domestic incense burning and nasopharyngeal carcinoma in Chinese: who are more likely to be the victims?

Yamaguchi, Rika, et al.
The importance of non-energy benefits in living environments for promoting stress-related health

Zaitseva, Nina, et al.
Health status characteristics of children living in the conditions of formaldehyde indoor air pollution

Zhang, Xin, et al.
Sick building syndrome among pupils in relation to school environment in Taiyuan, China

Zhang, Yan, et al.
Household pesticide exposure and the risk of childhood acute leukemia in Shanghai, China

Zhao, Zhuohui, et al.
Residential risk factors for atopic dermatitis in 3- to 6-year-old children: a cross-sectional study in Shanghai, China

Zock, Jan-Paul, et al.
Moisture damage in primary school buildings and respiratory health effects in teachers: the HITEA longitudinal study

Erratum
Topics included in Volume II:

Thermal comfort

IAQ & perceived air quality

Indoor air acoustics and lighting

Public health and exposure studies
List of contents

Thermal comfort

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arens, Edward, et al.</td>
<td>Modelling the comfort effects of short-wave solar radiation indoors</td>
<td>1</td>
</tr>
<tr>
<td>Bolineni, Sandeep, et al.</td>
<td>Coupling strategy for transient simulation of human thermoregulation and CFD indoor airflow models</td>
<td>17</td>
</tr>
<tr>
<td>Bugáň, Jozef, et al.</td>
<td>Experimental measurements of thermal comfort in two office buildings with low temperature heating and high temperature cooling systems</td>
<td>33</td>
</tr>
<tr>
<td>Cao, Bin, et al.</td>
<td>Thermal comfort in an open space of an office building: a field study in subtropical region</td>
<td>41</td>
</tr>
<tr>
<td>Chang, Shih-Yin, et al.</td>
<td>Subjective perception and thermoregulation in response to solar radiation and thermal transient developed from loss of solar radiant heat</td>
<td>45</td>
</tr>
<tr>
<td>Chen, Chen-Peng, et al.</td>
<td>Change in thermal sensation and thermal comfort as a result of using N95 filtering facepiece respirators under influence of temperature</td>
<td>48</td>
</tr>
<tr>
<td>Chen, Jianbo, et al.</td>
<td>An experimental study on indoor thermal comfort of the coupled capillary radiation with household replacement fresh air system</td>
<td>59</td>
</tr>
<tr>
<td>Cholewa, Tomasz, et al.</td>
<td>The analysis of thermal comfort in a room with radiant floor with different finishing materials of the floor surface</td>
<td>75</td>
</tr>
<tr>
<td>Cui, Weilin, et al.</td>
<td>Effect of air pressure on human thermal sensation and physiological parameters</td>
<td>78</td>
</tr>
<tr>
<td>Deng, Qihong, et al.</td>
<td>Heat stroke due to indoor environmental factors: modeling and prediction</td>
<td>84</td>
</tr>
<tr>
<td>Du, Xiuyuan, et al.</td>
<td>Improvement of different local air exposures on human thermal sensation in neutral-hot environment</td>
<td>87</td>
</tr>
<tr>
<td>Fišer, Jan</td>
<td>Impact of variance of clothing thermal resistance on comfort zone diagram modification</td>
<td>95</td>
</tr>
<tr>
<td>Fu, Ming, et al.</td>
<td>Heat and moisture transfer through clothing for a person with contact surface</td>
<td>100</td>
</tr>
<tr>
<td>Gauthier, Stephanie, et al.</td>
<td>Generating empirical probabilities of metabolic rate and clothing insulation values in field studies using wearable sensors</td>
<td>108</td>
</tr>
<tr>
<td>Han, Jieun, et al.</td>
<td>Effect of temperature on occupants’ anger</td>
<td>122</td>
</tr>
<tr>
<td>Hellwig, Runa, et al.</td>
<td>Considering training effects in performance tests – the case of the D2-attention test</td>
<td>130</td>
</tr>
<tr>
<td>Hirose, Ayaka, et al.</td>
<td>Effects of unsteady thermal stimulus from contact surface on thermal comfort</td>
<td>138</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Hong, Xiaowei, et al.</td>
<td>Thermal comfort survey of homes in Guangzhou</td>
<td>146</td>
</tr>
<tr>
<td>Honnekeri, Anoop, et al.</td>
<td>Use of adaptive actions and thermal comfort in a naturally ventilated office</td>
<td>154</td>
</tr>
<tr>
<td>Ishii, Jin, et al.</td>
<td>Field survey on thermal environment in toilet in Japanese house during summer</td>
<td>162</td>
</tr>
<tr>
<td>Ishii, Yoshiaki, et al.</td>
<td>Thermal comfort of radiant ceiling panel cooling system installed in an office in Japan</td>
<td>169</td>
</tr>
<tr>
<td>Jin, Quan, et al.</td>
<td>Thermal sensation and skin temperature during step-change in non-uniform indoor environment</td>
<td>175</td>
</tr>
<tr>
<td>Kabanshi, Alan, et al.</td>
<td>Perception of intermittent air velocities in classrooms</td>
<td>189</td>
</tr>
<tr>
<td>Karimipanah, Taghi, et al.</td>
<td>Investigation of flow pattern for a confluent-jets system on a workbench of an industrial space</td>
<td>192</td>
</tr>
<tr>
<td>Karlsen, Line, et al.</td>
<td>Operative temperature and thermal comfort in the sun - implementation and validation of a model for IDA ICE</td>
<td>200</td>
</tr>
<tr>
<td>Kim, Jungsoo, et al.</td>
<td>The effects of contextual differences on office workers’ perception of indoor environment</td>
<td>215</td>
</tr>
<tr>
<td>Kindangen, Jefrey, et al.</td>
<td>Investigation of thermal comfort in a passive and low energy classroom building. From gender’s point of view</td>
<td>223</td>
</tr>
<tr>
<td>Kitazawa, Sachie, et al.</td>
<td>Seasonal differences in human responses to increasing temperatures</td>
<td>231</td>
</tr>
<tr>
<td>Law, Tim</td>
<td>Radical methodology: the design and commercialisation nexus in research innovation on personal thermal comfort</td>
<td>239</td>
</tr>
<tr>
<td>Lee, Juyoun, et al.</td>
<td>Brain correlates with thermal comfort during whole body cooling by air flow</td>
<td>245</td>
</tr>
<tr>
<td>Lee, Meng-Chieh, et al.</td>
<td>Energy conservation between natural ventilated and air-conditioned classroom in Taiwan</td>
<td>247</td>
</tr>
<tr>
<td>Li, Min, et al.</td>
<td>Indoor thermal comfort in a mix mode office building in Shenzhen for a long time</td>
<td>255</td>
</tr>
<tr>
<td>Li, Xiang, et al.</td>
<td>An understanding of thermal comfort based on philosophy of harmony between nature and human</td>
<td>263</td>
</tr>
<tr>
<td>Li, Yanru, et al.</td>
<td>Assessment on indoor thermal environment of residential building room with capillary-tube air conditioning system</td>
<td>271</td>
</tr>
<tr>
<td>Luo, Maohui, et al.</td>
<td>Residential space heating: individual or centralized? A field study on indoor thermal comfort in Beijing.</td>
<td>288</td>
</tr>
<tr>
<td>Nagano, Kazuo, et al.</td>
<td>Climate atlas of Japan by the universal effective temperature ETU</td>
<td>307</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Nakano, Junta, et al.</td>
<td>Thermal comfort zone of semi-outdoor public spaces</td>
<td>314</td>
</tr>
<tr>
<td>Nathwani, Ashak</td>
<td>Indoor thermal comfort in commercial buildings versus air conditioning systems</td>
<td>320</td>
</tr>
<tr>
<td>Park, Dong yoon, et al.</td>
<td>Numerical analysis on the thermal and air exchange performance of linear slot diffuser length variations in an office space</td>
<td>334</td>
</tr>
<tr>
<td>Pasut, Wilmer, et al.</td>
<td>Energy-efficient comfort with a heated/cooled chair</td>
<td>342</td>
</tr>
<tr>
<td>Pustayova, Hana, et al.</td>
<td>Thermal comfort in dwelling buildings after refurbishment</td>
<td>351</td>
</tr>
<tr>
<td>Saito, Teruyuki, et al.</td>
<td>The effect of natural ventilation on physiological and psychological responses to the indoor thermal environment of Japanese housing</td>
<td>359</td>
</tr>
<tr>
<td>Sakoi, Tomonori, et al.</td>
<td>Cooling clothing utilizing water evaporation</td>
<td>367</td>
</tr>
<tr>
<td>Sakoi, Tomonori, et al.</td>
<td>Improvement of thermal comfort by cooling clothing in warm climate</td>
<td>375</td>
</tr>
<tr>
<td>Sakoi, Tomonori, et al.</td>
<td>Modification of standard effective temperature for the evaluation of activity intensity</td>
<td>383</td>
</tr>
<tr>
<td>Schiavon, Stefano, et al.</td>
<td>Stratification prediction model for perimeter zone UFAD diffusers based on laboratory testing with solar simulator</td>
<td>391</td>
</tr>
<tr>
<td>Schiavon, Stefano, et al.</td>
<td>Sensation of draft at ankles for displacement ventilation and underfloor air distribution systems</td>
<td>398</td>
</tr>
<tr>
<td>Simone, Angela, et al.</td>
<td>Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement</td>
<td>411</td>
</tr>
<tr>
<td>Son, Youngjoo, et al.</td>
<td>Occupants’ stress based on brain waves and salivary alpha-amylase responses on each PMV condition</td>
<td>419</td>
</tr>
<tr>
<td>Sui, Xuemin, et al.</td>
<td>Drawing of new thermal comfort charts for radiant cooled residential buildings</td>
<td>427</td>
</tr>
<tr>
<td>Tsutsumi, Hitomi, et al.</td>
<td>Field measurement on thermal comfort of patients and medical staff in a dialysis room</td>
<td>430</td>
</tr>
<tr>
<td>Tsuzuki, Kazuyo, et al.</td>
<td>Effects of airflow from air conditioners on human thermoregulation during sleep</td>
<td>438</td>
</tr>
<tr>
<td>van den Ouweland, Eefke, et al.</td>
<td>Perceived comfort in offices; a holistic approach</td>
<td>443</td>
</tr>
<tr>
<td>Verhaart, Jacob, et al.</td>
<td>Design of a neck heating system</td>
<td>451</td>
</tr>
<tr>
<td>Veselý, Michal, et al.</td>
<td>How to quantify thermal sensation and comfort?</td>
<td>459</td>
</tr>
<tr>
<td>Veselý, Michal, et al.</td>
<td>Fingertip temperature as a control signal for personalized heating</td>
<td>464</td>
</tr>
<tr>
<td>Vissers, Derek, et al.</td>
<td>Wireless determination of skin temperature by an infrared camera compared with i-buttons measurements</td>
<td>471</td>
</tr>
<tr>
<td>Vorre, Mette, et al.</td>
<td>Does variation in clothing make us more thermally comfortable?</td>
<td>479</td>
</tr>
</tbody>
</table>
Wang, Xin, et al. Comparison of indoor thermal environment with two kinds of air distributions in a large space in summer 487

Wang, Zhaojun, et al. Thermal comfort before and at the beginning of heating at office rooms in China severe cold zone 495

Wu, Mingyang, et al. Testing and comparative analysis on indoor thermal environments in the large space building of airport 503

Wu, Yu-Chi, et al. Subjective evaluation of thermal sensation and comfort subsequent to spatial transitions 511

Xia, Qian, et al. Effects of building lift-up design on pedestrian gust wind environment 519

Yang, Bin, et al. Performance evaluation of an energy efficient stand fan 527

Yang, Liu, et al. Residential thermal environment and thermal comfort in a rural area with a hot-arid climate: field study during the summer in Turfan, China 530

Yang, Rui, et al. Field study of interaction effect of sound and vibration on human thermal comfort in bus 538

Yang, Wei, et al. Overcooling and thermal comfort in air conditioned university buildings in Singapore 546

Yu, Juan, et al. Offset of warm sensation by local air flow: Chinese and Danish preference 554

Yumoto, Issei, et al. Development of a numerical thermoregulation model that considers the effects of aging 558

Zhai, Yongchao, et al. Gender differences in thermal comfort in a hot-humid climate 562

Zhang, Fan, et al. Thermal comfort during direct load control events in university lecture theatres 569

Zhang, Yufeng Design indicators of thermal environments for residential buildings in hot summer and warm winter zone of China 585

Zhao, Mingjie, et al. Thermal comfort investigation in supermarkets and grocery stores based on in-situ measurements and a survey study 588

Zhou, Xin, et al. Predict thermal sensation of Chinese people using a thermophysiological and comfort model 596

Zhou, Y., et al. Use of Indoor Environmental Quality (IEQ) calculator for assessing indoor thermal acceptance in air-conditioned classroom 604

Zhuo, Yanbin, et al. Indoor thermal comfort and heating temperature setpoint threshold research for office building in Tianjin China 607

Zuska, Lenka, et al. New method for evaluation of non-uniform indoor environment 610

Lan, Li, et al. Effects of moderate air temperature fluctuation on sleep quality and thermal comfort in healthy people 617

IAQ & perceived air quality

Almeida, Susana, et al. Indoor air quality in hospital environments 619

Bamba, Ikuko, et al. Relation of changes in cerebral blood flow and diffusion material caused by smelling wood 622

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen, Ailu, et al.</td>
<td>Occurrence of airborne phthalates in different air-conditioned buildings in Singapore</td>
<td>634</td>
</tr>
<tr>
<td>Du, Liuliu, et al.</td>
<td>Building energy-efficiency interventions in North-East Europe: effects on indoor environmental quality and public health</td>
<td>637</td>
</tr>
<tr>
<td>Fadeyi, Moshood, et al.</td>
<td>Effect of ozone initiated chemistry on perceptual responses and work performance of tropically acclimatized subjects in a simulated office environment</td>
<td>640</td>
</tr>
<tr>
<td>Földváry, Veronika, et al.</td>
<td>Impact of energy renovation on indoor air quality in multifamily dwellings in Slovakia</td>
<td>644</td>
</tr>
<tr>
<td>Höllbacher, Eva, et al.</td>
<td>Influence of VOC emissions from wood and wood-based materials on indoor air quality</td>
<td>647</td>
</tr>
<tr>
<td>Hurtíková, Daniela, et al.</td>
<td>The energy performance certificate of ventilation and evaluation of indoor air quality in office building in Slovakia</td>
<td>650</td>
</tr>
<tr>
<td>Justo Alonso, Maria, et al.</td>
<td>Case study of window and ventilation renovation and its impact on indoor climate</td>
<td>657</td>
</tr>
<tr>
<td>Kaul, Nivedita, et al.</td>
<td>Characteristics of combustion generated pm and nox: a case study of hostel kitchens, India</td>
<td>666</td>
</tr>
<tr>
<td>Koskela, Hannu, et al.</td>
<td>Effect of low ventilation rate on office work performance and perception of air quality – a laboratory study</td>
<td>673</td>
</tr>
<tr>
<td>Kurita, Hirofumi, et al.</td>
<td>Evaluation of oxidative radical reaction in aqueous media injected by discharge devices used in indoor air cleaners</td>
<td>676</td>
</tr>
<tr>
<td>Lappalainen, Vuokko, et al.</td>
<td>VOC profiles indicating odour IAQ problems in dwellings</td>
<td>678</td>
</tr>
<tr>
<td>Lin, Zhijing, et al.</td>
<td>Sick building syndrome, perceived odors, sensation of air dryness and indoor environment in Urumqi, China</td>
<td>685</td>
</tr>
<tr>
<td>Lipczynska, Aleksandra, et al.</td>
<td>Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution</td>
<td>693</td>
</tr>
<tr>
<td>Lopušniak, Martin, et al.</td>
<td>Effect of air distribution systems on CO2 concentration</td>
<td>701</td>
</tr>
<tr>
<td>Luther, Mark, et al.</td>
<td>Examining CO2 levels in school classrooms</td>
<td>704</td>
</tr>
<tr>
<td>Nakaoka, Hiroko, et al.</td>
<td>Aging variation in indoor air quality at experimental sites in Chemiless Town</td>
<td>712</td>
</tr>
<tr>
<td>Pagel, Érica, et al.</td>
<td>Indoor air exposure to fungi at the Brazilian Antarctic Station</td>
<td>718</td>
</tr>
<tr>
<td>Pagel, Érica, et al.</td>
<td>Impact of human activities and the building materials in the concentration of aldehydes in the Comandante Ferraz Antarctic station</td>
<td>726</td>
</tr>
<tr>
<td>Plesner, Christoffer, et al.</td>
<td>Evaluation of the indoor air quality in a single family Active house</td>
<td>732</td>
</tr>
<tr>
<td>Sacks, Dana, et al.</td>
<td>Case study: ventilation and thermal comfort parameter assessment of a local private gym in a retrofitted industrial building in central NJ The effect of air quality on sleep</td>
<td>740</td>
</tr>
<tr>
<td>Strøm-Tejsen, Peter, et al.</td>
<td>Assessment of school level prevalence of symptoms using questionnaire</td>
<td>748</td>
</tr>
<tr>
<td>Turunen, Mari, et al.</td>
<td>Ventilation and pollutants concentration requirements under combined pollution caused by human metabolism and building material</td>
<td>756</td>
</tr>
<tr>
<td>Wang, Jun, et al.</td>
<td></td>
<td>758</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Wang, Zhaojun, et al.</td>
<td>Study on PM2.5 and PM10 in offices in Harbin, China</td>
<td>766</td>
</tr>
<tr>
<td>Indoor air acoustics and lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fukuda, Miwa, et al.</td>
<td>What kind of residents' motivations to improve lighting environment leads to energy-saving at home?</td>
<td>774</td>
</tr>
<tr>
<td>Iwata, Toshie, et al.</td>
<td>Change in office lighting from new construction to existing building</td>
<td>781</td>
</tr>
<tr>
<td>Lee, Jeehwan, et al.</td>
<td>Influence of vent perforation on the ventilation and acoustical performances of double skin facades</td>
<td>789</td>
</tr>
<tr>
<td>Liao, Huey-Yan, et al.</td>
<td>Indoor environmental quality in green buildings under energy-efficient power management</td>
<td>797</td>
</tr>
<tr>
<td>Nagano, Kazuo, et al.</td>
<td>Development of equi-comfort charts constituted with temperature and noise at 150 and 3 lx</td>
<td>800</td>
</tr>
<tr>
<td>Sun, Chanjuan, et al.</td>
<td>The effect of lighting conditions on visual comfort</td>
<td>804</td>
</tr>
<tr>
<td>Taniguchi, Tomoko, et al.</td>
<td>Effect of living room LED lighting controlled by occupants on circadian rhythm and energy saving</td>
<td>812</td>
</tr>
<tr>
<td>Toftum, Jørn, et al.</td>
<td>Association between noise levels and CO2 concentrations in classrooms</td>
<td>820</td>
</tr>
<tr>
<td>Public health and exposure studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almeida-Silva, Marina, et al.</td>
<td>Human exposure to air pollutants: personal cloud phenomenon</td>
<td>823</td>
</tr>
<tr>
<td>Bluyssen, Philomena</td>
<td>How and why do people respond to indoor environmental stressors?</td>
<td>825</td>
</tr>
<tr>
<td>Chang, Che-Jung, et al.</td>
<td>Indoor air quality in hairdressing salons in Taipei</td>
<td>828</td>
</tr>
<tr>
<td>Che, Wenwei, et al.</td>
<td>Geographic and seasonal variations in air exchange rate and their impacts on the estimation of children's exposure to ambient PM2.5</td>
<td>836</td>
</tr>
<tr>
<td>Deng, Qihong, et al.</td>
<td>Effects of early life exposure to ambient air pollution on asthma among preschool children in China: An industrial environment cannot be overlooked</td>
<td>840</td>
</tr>
<tr>
<td>Deng, Qihong, et al.</td>
<td>Increased ambient temperature and risk of preterm birth: hot summer nights cause high risk?</td>
<td>843</td>
</tr>
<tr>
<td>Dieudonné, Nanfa, et al.</td>
<td>Environmental and health risk associated with the dissemination of Persistent Organic Pollutants (POPs) in Yaounde</td>
<td>846</td>
</tr>
<tr>
<td>Dott, Wolfgang, et al.</td>
<td>Terpene induced toxic effects in human lung cells</td>
<td>853</td>
</tr>
<tr>
<td>Du, Zhengjian, et al.</td>
<td>Risk assessment of population exposure to volatile organic compounds and carbonyls in urban China</td>
<td>856</td>
</tr>
<tr>
<td>Gall, Elliott, et al.</td>
<td>Indoor exposure to outdoor pollution in a tropical environment</td>
<td>864</td>
</tr>
<tr>
<td>Gudmundsson, Anders, et al.</td>
<td>Health effects of combined exposure to diesel exhaust and traffic noise</td>
<td>871</td>
</tr>
<tr>
<td>Huang, Chun-nan, et al.</td>
<td>Comparative assessment of children's exposure to formaldehyde in schools, kindergartens and dwellings</td>
<td>873</td>
</tr>
<tr>
<td>Hwang,</td>
<td>Personal exposures to particulate matters in various microenvironments</td>
<td>876</td>
</tr>
</tbody>
</table>
Yunhyung, et al. and their contributions in Seoul population

Kakitsuba, Naoshi. Effect of morning bright light after awake on morning rise in core temperature

Kim, Minsik, et al. Study on long-term radiation exposure analysis after the Fukushima Dai-ichi nuclear power plant accident: application of the EU long-term radiation exposure model (ERMIN)

Laverge, Jelle, et al. The impact of occluding bedding arrangements on rebreathing and physiological responses to it

Lee, Jae Young, et al. Indoor air quality at home of children with atopic dermatitis and their exposure to traffic-related air pollutants

Lendowski, Luba. "Integration of longerterm MRSA carriers in communities"

Leung, Nancy, et al. Reduction of influenza virus shedding in human bioaerosols by surgical face masks

Li, Li, et al. Dermal and oral exposure to dibutyl phthalate induced lung damage in Balb/C mice

Li, Linyan, et al. Effect of traffic exposure on sick building syndrome symptoms among guardians of preschool children in Beijing, China

Lin, Chi-Chi, et al. Personal exposure to air pollutants at lotus pond during Wannian Folklore Festival

Lindström, Cecilia, et al. Perfluorinated compounds in serum from 2,373 pregnant women in Sweden

Logue, Jennifer, et al. A method for quantifying the acute health impacts of residential non-biological exposures via inhalation

Ma, Ping, et al. Di-iso-nonyl phthalate oral exposure of Kunming mice induces hepatic and renal tissue injury

Mandin, Corinne, et al. Indoor air quality in office buildings in Europe: the OFFICAIR Project

Marini, Sara, et al. Airborne exposure of hairdressers during hair bleaching: a human chamber exposure study

Mentese, Sibel, et al. Comparison of exposure to indoor air pollution in different towns of Çanakkale, Turkey

Nastase, Ilinca, et al. Measurement and questionnaires survey of the indoor environment quality in an emergency hospital from Bucharest

Park, Duckshin, et al. Exposure to airborne particulate matter in different types of transportation

Parker, Kristia, et al. New routes of human exposure to methamphetamine from residential meth labs: post-remediation accumulation from air to skin oil

Sacks, Dana, et al. Case study: particle concentrations at a local private gym dependent on mechanical ventilation in a retrofitted industrial building in central NJ

Shu, Huan, et al. PVC flooring in the home is related to urinary levels of phthalates in Swedish pregnant women in the SELMA Study

Wierzbicka, Aneta, et al. A model for estimating particle concentration indoors – based on information from occupants’ questionnaires, indoor sources emission
factors, outdoor concentration and building characteristics
Wu, Chih-Da, et al.

Association between surrounding greenness and student performance using remote sensing
Xia, Qian, et al.

Effects of building lift-up design on pedestrian pollutant dispersion
Xiong, Jing, et al.

Investigation of human response to temperature step changes
Zhang, Huadi, et al.

Associations between children’s rhinitis and indoor air pollutants in kindergartens in Nanjing
Zhang, Xiaojing, et al.

Literature survey on the effects of pure carbon dioxide on health, comfort and performance
Zhou, Qi, et al.

CFD study on the wind-induced transmission of gaseous pollutants between flats in multistory residential buildings
Topics included in Volume III:

Source of indoor air pollutants

Particles

Control of indoor environment
List of contents

<table>
<thead>
<tr>
<th>Source of indoor air pollutants</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almeida-Silva, Marina, et al.</td>
<td>1</td>
</tr>
<tr>
<td>Source apportionment of indoor PM10 in elderly care center</td>
<td></td>
</tr>
<tr>
<td>Andersen, Helle, et al.</td>
<td>4</td>
</tr>
<tr>
<td>Emission of formaldehyde from furniture: assessment of its impact on indoor air quality</td>
<td></td>
</tr>
<tr>
<td>Boor, Brandon, et al.</td>
<td>12</td>
</tr>
<tr>
<td>New and used crib mattresses as a source of volatile organic compounds, phthalate and alternative plasticizers, and other chemical species in the infant sleep microenvironment</td>
<td></td>
</tr>
<tr>
<td>Chen, Ailu, et al.</td>
<td>20</td>
</tr>
<tr>
<td>Correlations between indoor particle and phthalate concentrations</td>
<td></td>
</tr>
<tr>
<td>Chen, Cheng, et al.</td>
<td>23</td>
</tr>
<tr>
<td>A comparison of the reduction Efficiency of indoor formaldehyde and VOCs concentration by using ventilation removal and SBMs</td>
<td></td>
</tr>
<tr>
<td>El-Bagir, Sohair, et al.</td>
<td>31</td>
</tr>
<tr>
<td>Multi-criteria ranking of house dust samples from residential dwellings</td>
<td></td>
</tr>
<tr>
<td>Emmerich, Steven, et al.</td>
<td>33</td>
</tr>
<tr>
<td>Measured carbon monoxide emission rates from stock and reduced- emission prototype portable generators</td>
<td></td>
</tr>
<tr>
<td>Fang, Jung-Tang, et al.</td>
<td>41</td>
</tr>
<tr>
<td>Indoor-outdoor air concentrations of organic air toxics in the vicinity of a petrochemical industrial complex in Kaohsiung, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Faure, Eddie, et al.</td>
<td>44</td>
</tr>
<tr>
<td>Nail bar impact on indoor air quality</td>
<td></td>
</tr>
<tr>
<td>Havermans, John, et al.</td>
<td>47</td>
</tr>
<tr>
<td>Emission of volatiles from Spray Polyurethane Foam (SPF) insulated crawl spaces</td>
<td></td>
</tr>
<tr>
<td>Hofbauer, Wolfgang, et al.</td>
<td>52</td>
</tr>
<tr>
<td>Isopleth systems of insulation materials</td>
<td></td>
</tr>
<tr>
<td>Hofbauer, Wolfgang, et al.</td>
<td>59</td>
</tr>
<tr>
<td>Towards a better understanding of wood decay</td>
<td></td>
</tr>
<tr>
<td>Isaxon, Christina, et al.</td>
<td>64</td>
</tr>
<tr>
<td>Contribution of indoor generated submicrometer particles to residential exposure</td>
<td></td>
</tr>
<tr>
<td>Jian, Yating, et al.</td>
<td>68</td>
</tr>
<tr>
<td>Emission of particle-bound polycyclic aromatic hydrocarbons during Chinese cooking in a kitchen chamber</td>
<td></td>
</tr>
<tr>
<td>Kim, Hyun-tae, et al.</td>
<td>75</td>
</tr>
<tr>
<td>The concentration of phthalate in settled dust in kindergartens and emission source</td>
<td></td>
</tr>
<tr>
<td>Kujanpää, Liisa, et al.</td>
<td>81</td>
</tr>
<tr>
<td>Indoor air quality in offices adjacent to industrial halls</td>
<td></td>
</tr>
<tr>
<td>Langeland, Majbrith, et al.</td>
<td>85</td>
</tr>
<tr>
<td>National investigation of PCB sources as an indoor pollutant in domestic houses, offices, institutions, storage spaces and workshops</td>
<td></td>
</tr>
<tr>
<td>Lazarov, Borislav, et al.</td>
<td>92</td>
</tr>
<tr>
<td>Flame retardant emission testing from treated products</td>
<td></td>
</tr>
<tr>
<td>Lee, Jeong-Hun, et al.</td>
<td>95</td>
</tr>
<tr>
<td>Development of environment-friendly furnishing materials using tannin resin</td>
<td></td>
</tr>
<tr>
<td>Lee, Wei-Lun, et al.</td>
<td>99</td>
</tr>
<tr>
<td>Phthalates in Indoor dust and outdoor soil in the vicinity of a petrochemical industrial complex in Southern Taiwan</td>
<td></td>
</tr>
<tr>
<td>Liang, Yirui, et</td>
<td>102</td>
</tr>
<tr>
<td>An improved method for measuring and characterizing phthalate emissions</td>
<td></td>
</tr>
</tbody>
</table>
Lin, Chi-Chi, et al.
from building materials and its application to exposure assessment
Carbonyls and BTEX emissions from selected building materials
110

Lorentzen, Johnny, et al.
Chloroanisoles represent a common indoor air quality problem in Sweden – sensitive methods to detect the malodorous chemicals in air and materials
Lattice Boltzmann simulations for VOCs migration in porous building materials reconstructed by stochastic fractal theory
Development of test systems for characterizing emissions from Spray Polyurethane Foam Insulation (SPFI) products
114

Ma, Qiang, et al.
Distribution of legacy and emerging semi-volatile organic contaminants in a residential environment
Indoor air pollution sources and exposures in primary schools: UPTECH Synthesis
Evaluation on inhaled air quality in indoor environment applying sorptive building materials
130

Mason, Mark, et al.
Simulation study of carbon monoxide exposure from portable generators in U.S. residences
An original method using a passive flux sampler to characterize the gas-phase boundary layer on the surface of indoor materials
Comparison of contribution to people health risk from indoor and outdoor carbonyls sources in Beijing, China
CO2 generation rate in Chinese people
134

Melymuk, Lisa, et al.
Statistical models of whole-building volatile organic compound emission rates in U.S. offices
Chemical characterization and health impact assessment of VOCs and particles in thirdhand tobacco smoke
137

Morawska, Lidia, et al.
Consumer product emission testing in EPHECT
Experimental study Volatile Organic Compounds (VOCs) in normal human exhaled breath
144

Persily, Andrew, et al.
Resuspension of submicron particles due to human walking
Source apportionment of volatile organic compounds in aircraft cabin
152

Plaisance, Herve, et al.
Dynamic preparation of multi-component volatile organic compounds via microsyringe pump
Investigation of particulate matter in a museum in Shanghai, China
160

Pu, Zhongnan, et al.
Simulation and instrumental examination of indoor air for formaldehyde, styrene and ethylbenzene, migrating from building and home decoration materials in the presence of combined use
163

Qi, Meiwei, et al.
Effect of high-voltage electric field on formaldehyde diffusion within building materials
171

Rackes, Adams, et al.
Statistical models of whole-building volatile organic compound emission rates in U.S. offices
Chemical characterization and health impact assessment of VOCs and particles in thirdhand tobacco smoke
177

Sleiman, Mohamad, et al.
Consumer product emission testing in EPHECT
Experimental study Volatile Organic Compounds (VOCs) in normal human exhaled breath
179

Stranger, Marianne, et al.
Dynamic preparation of multi-component volatile organic compounds via microsyringe pump
Investigation of particulate matter in a museum in Shanghai, China
183

Sun, Xiao, et al.
Resuspension of submicron particles due to human walking
Source apportionment of volatile organic compounds in aircraft cabin
190

Tian, Yilin, et al.
Dynamic preparation of multi-component volatile organic compounds via microsyringe pump
Investigation of particulate matter in a museum in Shanghai, China
192

Wang, Chao, et al.
Dynamic preparation of multi-component volatile organic compounds via microsyringe pump
Investigation of particulate matter in a museum in Shanghai, China
194

Xiang, Jianbang, et al.
Dynamic preparation of multi-component volatile organic compounds via microsyringe pump
Investigation of particulate matter in a museum in Shanghai, China
200

Xia, Guangli, et al.
Investigation of particulate matter in a museum in Shanghai, China
198

Xu, Bo, et al.
Simulation and instrumental examination of indoor air for formaldehyde, styrene and ethylbenzene, migrating from building and home decoration materials in the presence of combined use
206

Zaitseva, Nina, et al.
Simulation and instrumental examination of indoor air for formaldehyde, styrene and ethylbenzene, migrating from building and home decoration materials in the presence of combined use
214

...
Zhang, Qin, et al. A pilot study of volatile organic compounds emitted by the whole body, exclusive of exhaled breath

Particles

Almand-Hunter, Berkeley, et al. Dust exposure in indoor climbing facilities

Apostoloski, Zoran, et al. Indoor concentrations of particulate matters at domestic homes

Boor, Brandon, et al. Infant crawling-induced resuspension of settled floor dust

Cai, Wei, et al. Particulate matter air pollution in children’s residential environments in Wuhan, China

Canha, Nuno, et al. Indoor particles in scholar environments by passive deposition methodology: applicability and source apportionment

Chernyi, Konstantin A methodology for corona air ionizer usage when conducting correction of indoor air ion composition

Cui, Mingyu, et al. Deposition and resuspension of particles on supply air duct in mechanically ventilated residential buildings

Da, Guillaume, et al. A multi-scale experimental approach for studying emission, transport, and deposition of respiratory droplets in indoor environments

Fan, Li, et al. Variation law of PM2.5 in subway station of northern area in China

Hu, Shih-Cheng, et al. Validation of leak test models for pharmaceutical isolators

Huang, Lihui, et al. Relationship between indoor and outdoor PM2.5 for residential buildings in Beijing, China

Hwang, Do Yeon, et al. Component analysis of nano particles in subway tunnels

Ji, Wenjing, et al. Comparison of contribution of outdoor particles between indoor sources to indoor PM2.5 concentration and associated exposure: a preliminary modeling study

Jiang, Yu, et al. Study of different self-cleaning technologies in reducing particle deposition under dry environment

Jung, Chien-Cheng, et al. Sources, elemental composition and health risks of fine particle in office spaces

Li, Xiangdong, et al. Comparison of the Eulerian-Eulerian and Eulerian-Lagrangian models for simulating particulate contaminant transport in indoor spaces

Liaud, Céline, et al. Development of a 3-stage cascade impactor sampling method to measure particle-bound PAHs in indoor air

Mei, Xiong, et al. Measuring resuspension of deposited particles induced by sneezing jets

Mercier, Fabien, et al. A multi-residue method for the simultaneous analysis of several classes of semi-volatile organic compounds in airborne particles

Merzsch, Stephan, et al. An integrated personal monitor for engineered nanoparticles
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael, Sabrina, et al.</td>
<td>Toxic effects and chemical characteristics of ambient particulate matter</td>
<td>342</td>
</tr>
<tr>
<td>Offermann, Francis, et al.</td>
<td>Infectious disease aerosol exposures with and without surge control ventilation system modifications</td>
<td>345</td>
</tr>
<tr>
<td>Ou, Cuiyun, et al.</td>
<td>Numerical simulation of airflow and particle deposition in the whole human tracheobronchial airways</td>
<td>356</td>
</tr>
<tr>
<td>Park, Duckshin, et al.</td>
<td>Particulate matters levels in subway</td>
<td>359</td>
</tr>
<tr>
<td>Polednik, Bernard, et al.</td>
<td>Particle concentration changes during masses in a church</td>
<td>363</td>
</tr>
<tr>
<td>Qian, Jing, et al.</td>
<td>Walking-induced particle resuspension in indoor environments: a review</td>
<td>366</td>
</tr>
<tr>
<td>Seo, Chung-Kook, et al.</td>
<td>A field study on particle resuspension from supply air duct in mechanically ventilated residential buildings</td>
<td>369</td>
</tr>
<tr>
<td>Shi, Shanshan, et al.</td>
<td>Deposition velocity of fine and ultrafine particles onto manikin surfaces in different air speed indoor environments</td>
<td>376</td>
</tr>
<tr>
<td>Spilak, Michal, et al.</td>
<td>Evaluation of contribution of human activities indoors to total concentration of UFP indoors</td>
<td>380</td>
</tr>
<tr>
<td>Wang, Jinliang, et al.</td>
<td>Dynamic investigation on bacteria-carrying particles distribution in operating theatre under the walking impact of a scrub nurse</td>
<td>388</td>
</tr>
<tr>
<td>Zhang, Jinping, et al.</td>
<td>Study on polydisperse particle deposition in a wind tunnel</td>
<td>396</td>
</tr>
<tr>
<td>Zou, Zhijun, et al.</td>
<td>Experimental study for the effect of building air tightness on indoor particle concentration</td>
<td>404</td>
</tr>
</tbody>
</table>

Control of indoor environment

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apel, Christina, et al.</td>
<td>Sensitive and fast determination of organic acids in indoor air</td>
<td>409</td>
</tr>
<tr>
<td>Bolashikov, Zhecho Dimitrov, et al.</td>
<td>Control of exposure to exhaled air from sick occupant with wearable personal exhaust unit</td>
<td>412</td>
</tr>
<tr>
<td>Boulet, Sylvain, et al.</td>
<td>Multi-criteria decision analysis applied to the control of thermal, olfactory, visual and acoustic indoor environment</td>
<td>420</td>
</tr>
<tr>
<td>Brandt, Stefan, et al.</td>
<td>Pressure maintenance and air quality control in rooms with higher physical boundary conditions</td>
<td>428</td>
</tr>
<tr>
<td>Cable, Axel, et al.</td>
<td>Can demand controlled ventilation replace space heating in office buildings with low heating demand?</td>
<td>434</td>
</tr>
<tr>
<td>Chan, Wanyu, et al.</td>
<td>Automated control of ventilation and filtration to improve indoor air quality in residences</td>
<td>442</td>
</tr>
<tr>
<td>Chang, Chia-Wen, et al.</td>
<td>Ce, S Co-doped TiO2 for photocatalyst degradation of dimethyl sulfide under visible light: parameters study</td>
<td>445</td>
</tr>
<tr>
<td>Chang, Xiaomin, et al.</td>
<td>Integrated indoor environment control system for hotels</td>
<td>454</td>
</tr>
<tr>
<td>Chen,</td>
<td>The experimental method to separate the convective heat transfer and radiant</td>
<td>462</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Jianchang, et al.</td>
<td>Heat transfer in heat conduction of the wall</td>
<td></td>
</tr>
<tr>
<td>Cheng, Rui, et al.</td>
<td>Simultaneous and effective control of indoor climate and air quality: framework and preliminary evaluation</td>
<td>467</td>
</tr>
<tr>
<td>Cheng, Yong, et al.</td>
<td>Performance evaluation of stratum ventilation with slot diffuser using CFD</td>
<td>470</td>
</tr>
<tr>
<td>Chuah, Yew, et al.</td>
<td>Air distribution and draught rate analysis for chilled beam cooling system</td>
<td>478</td>
</tr>
<tr>
<td>Fraňa, Karel, et al.</td>
<td>The effect of the window temperature on the thermal comfort in a room heated by a floor convector</td>
<td>494</td>
</tr>
<tr>
<td>Fu, Bailin, et al.</td>
<td>Research on fungal microorganisms growth of central air conditioning system under various thermal conditions</td>
<td>503</td>
</tr>
<tr>
<td>Guglielmino, Maud, et al.</td>
<td>Progress in the development of a colorimetric analytical method for on-line gaseous formaldehyde detection</td>
<td>511</td>
</tr>
<tr>
<td>Haugen, Elisabeth, et al.</td>
<td>Hygienic and Microbiological (HYGMIC) evaluation of air intake and plants – ten-years-experience</td>
<td>519</td>
</tr>
<tr>
<td>Honma, Yoshinori</td>
<td>Ventilation case study for improving hygrothermal condition of the emergency temporary housing</td>
<td>527</td>
</tr>
<tr>
<td>Huang, Jeng-Min, et al.</td>
<td>A numerical investigation of flow and concentration fields in an operation room at low inlet air speed</td>
<td>535</td>
</tr>
<tr>
<td>Huang, Pei, et al.</td>
<td>Uncertainty analysis of peak cooling load calculation for HVAC system design</td>
<td>538</td>
</tr>
<tr>
<td>Ilaçqua, Vito, et al.</td>
<td>Effects of climate change on residential indoor-outdoor air exchange</td>
<td>541</td>
</tr>
<tr>
<td>Jia, Jing bo, et al.</td>
<td>Manganese-based catalysts for ozone decomposition</td>
<td>544</td>
</tr>
<tr>
<td>Jiang, Hui, et al.</td>
<td>Self-adaptive control to improve energy efficiency and thermal comfort for variable air volume system</td>
<td>547</td>
</tr>
<tr>
<td>Kalliomäki, Petri, et al.</td>
<td>Airflow patterns through a single hinged and a sliding-door in hospital isolation room</td>
<td>555</td>
</tr>
<tr>
<td>Keller, Markus, et al.</td>
<td>Controlled environments for VOC-sensitive manufacturing processes: from material classification to controlled IAQ in cleanrooms</td>
<td>563</td>
</tr>
<tr>
<td>Krajčík, Michal, et al.</td>
<td>Evaluation of the indoor environment in an office room equipped by displacement ventilation and radiant floor cooling</td>
<td>571</td>
</tr>
<tr>
<td>Kulve, Marije, et al.</td>
<td>Indoor air in long term care facilities and spread of infectious diseases</td>
<td>579</td>
</tr>
<tr>
<td>Lee, Sihwan, et al.</td>
<td>The effects of moving objects on the transport of indoor air pollutants</td>
<td>588</td>
</tr>
<tr>
<td>Li, Jinge, et al.</td>
<td>Manganese oxides films loading on activated carbon via in-situ reduction for formaldehyde removal at room temperature</td>
<td>595</td>
</tr>
<tr>
<td>Liao, Yundan, et al.</td>
<td>Uncertainty impacts on reliability and energy-efficiency of chiller sequencing control</td>
<td>599</td>
</tr>
<tr>
<td>Liaud, Céline, et al.</td>
<td>Highlighting indoor physico-chemical processes through the temporal monitoring of VOCs concentrations using an automatic sampler coupled to GC analysis</td>
<td>607</td>
</tr>
<tr>
<td>Name(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Luengas, Angela, et al.</td>
<td>Coupling biofiltration and adsorption to treat indoor VOCs</td>
<td>618</td>
</tr>
<tr>
<td>Luo, Xilian, et al.</td>
<td>Measurement and evaluation of a local environmental control system for relics preservation in archaeology museum</td>
<td>626</td>
</tr>
<tr>
<td>Ma, Aiming, et al.</td>
<td>Design strategies for effective fresh air system suitable to residential buildings in China</td>
<td>630</td>
</tr>
<tr>
<td>Markowicz, Pawel, et al.</td>
<td>Improving the indoor air quality in a school building by using a surface emissions trap</td>
<td>638</td>
</tr>
<tr>
<td>Matsumoto, Hiroshi, et al.</td>
<td>Thermal performance of an energy efficient airflow window in buildings</td>
<td>641</td>
</tr>
<tr>
<td>Matsunaga, Hiroki, et al.</td>
<td>Numerical investigation on different operation controls of a multi-split air-conditioning system during a power-saving period</td>
<td>644</td>
</tr>
<tr>
<td>Meadow, James</td>
<td>What’s in your personal microbial cloud?</td>
<td>652</td>
</tr>
<tr>
<td>Mentese, Sibel, et al.</td>
<td>Contribution of Rotor-Turbine Ventilator (RTV) on indoor air quality of a cafeteria</td>
<td>655</td>
</tr>
<tr>
<td>Nakai, Satoshi, et al.</td>
<td>A longitudinal study about house characteristics and indoor environment</td>
<td>658</td>
</tr>
<tr>
<td>Nam, In-Sick, et al.</td>
<td>Penetration of outdoor particles and NO2 into the building</td>
<td>664</td>
</tr>
<tr>
<td>Offermann, Francis</td>
<td>Chemical emissions from e-cigarettes: direct and indirect passive exposures</td>
<td>669</td>
</tr>
<tr>
<td>Oh, Hyeon-Ju, et al.</td>
<td>Assessment of particles and bio-aerosols distributed within a building located in heavy traffic area</td>
<td>677</td>
</tr>
<tr>
<td>Qin, Jun, et al.</td>
<td>Design of salt water model experiment based on large space air-conditioned with low-sidewall air supply and research on energy ratio entrained by medium-height return air grille</td>
<td>691</td>
</tr>
<tr>
<td>Ramalho, Olivier, et al.</td>
<td>Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values</td>
<td>700</td>
</tr>
<tr>
<td>Rose, William, et al.</td>
<td>Radon reduction through floor air sealing</td>
<td>708</td>
</tr>
<tr>
<td>Scutaru, Ana Maria, et al.</td>
<td>AgBB strategies for reduction of VOC emissions from indoor products – experiences and progress in harmonisation in Europe</td>
<td>714</td>
</tr>
<tr>
<td>Su, Chunxiao, et al.</td>
<td>A field test to performance of upper-room UVGI in elementary school</td>
<td>722</td>
</tr>
<tr>
<td>Tsao, Yung-Chieh, et al.</td>
<td>An intervention study on the absence of the upper respiratory infection in the water-damaged indoor environment of a kindergarten</td>
<td>726</td>
</tr>
<tr>
<td>Tsuzuki, Hiromasa, et al.</td>
<td>Comfortable thermal environment for people sensitive to cold in housing during summer</td>
<td>730</td>
</tr>
<tr>
<td>Urano, Katsuhiko, et al.</td>
<td>High-temperature cooling & low-temperature heating AC system (Part 2). Evaluation of thermal comfort with all air supplied induction radiant and laminar flow AC</td>
<td>737</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Uth, Simon, et al.</td>
<td>Human response to individually controlled micro environment generated with localized chilled beam</td>
<td>745</td>
</tr>
<tr>
<td>van Berkel, Samuel Vladykova, Petra, et al.</td>
<td>Limitations of carbon monoxide controlled garage ventilation</td>
<td>753</td>
</tr>
<tr>
<td>Wang, Fujen, et al.</td>
<td>Practical investigation of IEQ measurements in an office-retail building</td>
<td>761</td>
</tr>
<tr>
<td>Wang, Fulin, et al.</td>
<td>Evaluation of indoor environment parameters and energy-efficient HVAC system for an unoccupied operating room</td>
<td>769</td>
</tr>
<tr>
<td>Wang, Huan, et al.</td>
<td>Preliminary study on perception-based indoor thermal environment control</td>
<td>777</td>
</tr>
<tr>
<td>Wang, Jinlong, et al.</td>
<td>A study on the purging flow rate and local mean age of air in a large space building with side-wall air supply and stratified air conditioning system</td>
<td>784</td>
</tr>
<tr>
<td>Wang, Kai-Feng, et al.</td>
<td>Indoor air quality diagnostic expert system for optimal improvement measures</td>
<td>798</td>
</tr>
<tr>
<td>Wang, Pengfei, et al.</td>
<td>Field measurement and analysis of air quality inside subway</td>
<td>806</td>
</tr>
<tr>
<td>Wang, Xiaoliang, et al.</td>
<td>A prediction method for the indoor air relative humidity of the room with constant temperature and humidity based on the heat balance</td>
<td>811</td>
</tr>
<tr>
<td>Wang, Yu, et al.</td>
<td>Experimental investigations on characterization of mini-environments in a cleanroom with non-unidirectional airflow</td>
<td>819</td>
</tr>
<tr>
<td>Xu, Yao, et al.</td>
<td>A novel air dehumidification method using electrodialysis</td>
<td>822</td>
</tr>
<tr>
<td>Xu, Yuzhen, et al.</td>
<td>Inactivation of bio-aerosols by non-thermal plasma</td>
<td>830</td>
</tr>
<tr>
<td>Xue, Yu, et al.</td>
<td>Comparison and integration of generic algorithm and adjoint algorithm for optimizing indoor environments</td>
<td>832</td>
</tr>
<tr>
<td>Yang, Jun, et al.</td>
<td>Analysis of indoor hygrothermal conditions in residential buildings during the plum rain season in Southeast China</td>
<td>841</td>
</tr>
<tr>
<td>Yeh, Yu-Chun, et al.</td>
<td>Moisture-buffering assessment of materials applied in a residential unit in Taiwan by using the mold germination graph method</td>
<td>848</td>
</tr>
<tr>
<td>Yuan, Yongli, et al.</td>
<td>Experimental research on ceiling radiant panel combined with different air distribution system</td>
<td>856</td>
</tr>
<tr>
<td>Zhang, Changbin, et al.</td>
<td>Sodium promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature</td>
<td>864</td>
</tr>
<tr>
<td>Zhang, Qianru, et al.</td>
<td>The characteristics of the air temperature distributions with different heat source powers in a large space building under the stratified air conditioning system with low-sidewall air inlets and middle-height air outlets</td>
<td>868</td>
</tr>
<tr>
<td>Zhang, Xianping, et al.</td>
<td>Assessment of boiler and heat pump using R744 based natural mixture as working fluid</td>
<td>873</td>
</tr>
<tr>
<td>Zhao, Haitian, et al.</td>
<td>A field study of indoor environment quality of super high-rise buildings with temperature and humidity independent control system</td>
<td>876</td>
</tr>
</tbody>
</table>
Topics included in Volume IV:

Ventilation

Filtration and air cleaning
List of contents

Ventilation

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdul-Hamid, Akram, et al.</td>
<td>Evaluation of set points for moisture supply and volatile organic compounds as controlling parameters for demand controlled ventilation in multifamily houses</td>
</tr>
<tr>
<td>Ai, Zhengtao, et al.</td>
<td>Comparison of single-sided ventilation characteristics between single-room and multistory buildings due to wind effect</td>
</tr>
<tr>
<td>An, Karl, et al.</td>
<td>Pollutant penetration into idealized naturally ventilated residences by wind driven flow using CFD approach</td>
</tr>
<tr>
<td>Atwal, Loveleen, et al.</td>
<td>Ventilation for a house as a system</td>
</tr>
<tr>
<td>Björling, Mikael, et al.</td>
<td>Air infiltration into naturally ventilated apartments in multifamily dwellings</td>
</tr>
<tr>
<td>Bolashikov, Zhecho Dimitrov, et al.</td>
<td>Comparison of radiant and convective cooling of office room: effect of workstation layout</td>
</tr>
<tr>
<td>Canha, Nuno, et al.</td>
<td>Ventilation characterization of 17 nursery and elementary schools in France and its impact on indoor air pollution</td>
</tr>
<tr>
<td>Chen, Bin, et al.</td>
<td>A comparison between two Underfloor Air Distribution (UFAD) design tools</td>
</tr>
<tr>
<td>Chen, Nientsu, et al.</td>
<td>Impact of air guide design of residential balcony on indoor ventilation in Southern Taiwan</td>
</tr>
<tr>
<td>Cheng, Yong, et al.</td>
<td>Numerical comparison of indoor air quality and local thermal comfort in a classroom with three ventilation methods</td>
</tr>
<tr>
<td>Cheng, Yuanda, et al.</td>
<td>Alternative stratified air distribution designs in a terminal building</td>
</tr>
<tr>
<td>Chu, Chia-Ren, et al.</td>
<td>Numerical Analysis of Wind-Driven Cross Ventilation in Long Buildings</td>
</tr>
<tr>
<td>Cui, Dongjin, et al.</td>
<td>Effect of an upstream building on natural ventilation performance of multi-story buildings</td>
</tr>
<tr>
<td>Cui, Shuqing, et al.</td>
<td>Performance evaluation of natural ventilation through windows with horizontal blade shutters</td>
</tr>
<tr>
<td>Deng, Shihan, et al.</td>
<td>Which DOAS configuration is preferred? A simulation study in 5 U.S. climates</td>
</tr>
<tr>
<td>Di Placido, Adam, et al.</td>
<td>A controlled ventilation strategy for Ontario homes: a comparative analysis of energy-use, air quality, and economics</td>
</tr>
<tr>
<td>Diallo, Thierno, et al.</td>
<td>Impact of building ventilation systems on the operation of passive soil depressurization systems</td>
</tr>
<tr>
<td>Duan, Cui-e, et al.</td>
<td>Numerical studies on ventilation and pollutant dispersion in residence community with different building layouts</td>
</tr>
<tr>
<td>Duan, Shuangping, et al.</td>
<td>Analysis of hybrid ventilation in buildings with large openings</td>
</tr>
<tr>
<td>Fang, Min, et al.</td>
<td>Numerical study on efficiency of natural ventilation in a long-span mine-selecting plant in cold area</td>
</tr>
<tr>
<td>Freitag, Henning, et al.</td>
<td>A fast laser optical method for the evaluation of the ventilation effectiveness</td>
</tr>
<tr>
<td>Gong, Jian</td>
<td>Solution multiplicity of natural ventilation in two horizontally-connected buildings</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Guan, Yanling, et al.</td>
<td>heated compartments</td>
</tr>
<tr>
<td>Gunner, Amalie, et al.</td>
<td>PIV experiment analysis of indoor flow field under wind-driven natural ventilation with different window openings</td>
</tr>
<tr>
<td>He, Lei, et al.</td>
<td>The optimization rule for the ventilation effectiveness of CPSD vents in the subway station</td>
</tr>
<tr>
<td>Hellwig, Runa, et al.</td>
<td>Prospects of reactivating historical stack ventilation systems in schools - a measurement analysis</td>
</tr>
<tr>
<td>Hofer, Valeria, et al.</td>
<td>Numerical comparison of local and global air distribution in terraced assembly rooms</td>
</tr>
<tr>
<td>Iddon, Christopher, et al.</td>
<td>Poor indoor air quality measured in UK class rooms, increasing the risk of reduced pupil academic performance and health</td>
</tr>
<tr>
<td>Iqbal, Ahsan, et al.</td>
<td>Single-sided natural ventilation through a centre-pivot roof window</td>
</tr>
<tr>
<td>Jareemit, Daranee, et al.</td>
<td>Investigation of air exchange and occupancy rates in big-box retail buildings</td>
</tr>
<tr>
<td>Johansson, Dennis, et al.</td>
<td>Supply air heating in dwellings – study on indoor temperatures and air movements by measurements and simulations</td>
</tr>
<tr>
<td>Justo Alonso, Maria, et al.</td>
<td>Case study of window and ventilation refurbishment – simulation on indoor environment quality</td>
</tr>
<tr>
<td>Kajtar, Laszlo, et al.</td>
<td>Analytical model based investigation of ventilation system energy consumption</td>
</tr>
<tr>
<td>Kalamees, Targo, et al.</td>
<td>Indoor climate and ventilation in Estonian manor schools</td>
</tr>
<tr>
<td>Kameishi, Keiji, et al.</td>
<td>Field measurement and CFD simulation of residual lifetime of CO2 in office space for developing demand controlled energy recovery ventilator</td>
</tr>
<tr>
<td>Kim, Moon Keun, et al.</td>
<td>Introduction of a novel ventilation strategy recirculating indoor air with CO2 capture device</td>
</tr>
<tr>
<td>Kolarik, Jakub</td>
<td>CO2 sensor versus Volatile Organic Compounds (VOC) sensor – analysis of field measurement data and implications for demand controlled ventilation</td>
</tr>
<tr>
<td>Kong, Meng, et al.</td>
<td>Air and air contaminant flows in office cubicles with and without personal ventilation: a CFD modelling and simulation study</td>
</tr>
<tr>
<td>Kriegel, Martin, et al.</td>
<td>Unsteady supply air to improve energy efficiency, thermal an hygienic comfort especially at part load</td>
</tr>
<tr>
<td>Lapisa, Remon, et al.</td>
<td>Numerical analysis of the thermal stratification modelling effect on comfort for the case of a commercial low-rise building</td>
</tr>
<tr>
<td>Lee, Jungyong, et al.</td>
<td>Occupancy estimation method using dynamic neural network model based on CO2 concentration and additional factors</td>
</tr>
<tr>
<td>Leiblein, Thomas, et al.</td>
<td>Field study of natural, mechanical and hybrid ventilation systems of 27</td>
</tr>
</tbody>
</table>
Li, Fei, et al. A method to measure three dimensional airflow rates in an aircraft cabin 332
Li, Haoru, et al. Field testing of natural ventilation in college student dormitories in Beijing, China 338
Liang, Chao, et al. Analysis on energy saving potential of FCUs with cooling water in the upper zone in large-space buildings with stratified air-conditioning system 347
Liang, Chao, et al. Equivalent contaminant source: a new index to evaluate the local ventilation performance 354
Lin, Kan, et al. Simulation analysis for airflow and reduction of cooling load in the forced active ventilated wall of detached house 362
Lin, Xingbin, et al. CO2-based dynamic reset of outdoor airflow rate for multiple zone HVAC systems 370
Lu, Pengfei, et al. Experimental study on human exposure to occupant generated pollutants in rooms with ductless personalized ventilation 373
Lyng, Nadja, et al. Ventilation as mitigation of PCB contaminated air in buildings: review of nine cases in Denmark 381
Maddalena, Randy, et al. Ventilation rates per person and per unit floor area affect decision making 389
Monteiro, Joaquim, et al. Comparison of contaminant removal effectiveness and air change efficiency as indicator of air diffusion quality 392
Nie, Jinzhe, et al. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils 400
Ogita, Shunsuke, et al. Field measurements of thermal environment of a medium-sized electric commercial kitchen with ceiling supply displacement ventilation system 408
Park, Beungyong, et al. To improvement of natural ventilation strategy for energy saving in a university classroom 411
Qin, Hao, et al. Influence of re-entrant typology in wind-induced natural ventilation and pollutant dispersion based on coupled CFD simulation 419
Rim, Donghyun, et al. Impact of increasing outdoor ventilation rates on energy consumption for office buildings in tropical climates 423
Rong, Li, et al. Ammonia and methane emissions from a hybrid ventilated dairy cow building and impacts of wind velocity and air temperature on air exchange rate 427
Shi, Shanshan, et al. Experimental study about the infiltration rates distribution of residential houses in Beijing, China 430
Taheri, Mahnameh, et al. A comparative field study of space ventilation systems 433
Takaki, Rie, et al. A study on application of ventilation and air-conditioning system using desiccant material and solar thermal energy to real building - outline of system and results on system performance of field survey in summer 441
Takizawa, Masaharu, et al. Research of the ventilation performance prediction of a house 449
Tang, Shiu-Keung Effects of wing-wall on the natural ventilation in nearby indoor spaces 455
Toda, Yuta, et al. Long-term field measurements and performance assessment of CO2-demand-controlled energy recovery ventilator 462
van Berkel, Samuel, et al. Decentralized ventilation heat recovery using fine copper wires 467
Wang, Qun, et al. Assessment of air change rate and contribution ratio in idealized urban canopy layers by tracer gas simulations 470
Wang, Ying, et al. The influence of the usage of mixing fans in ventilation rate test 478
Wu, Xiaozhou, et al. Comparison of mixing and displacement ventilation in a low energy office building during heating season 492
Yao, Ting, et al. Numerical study of feasibility of fabric diffuser for stratum ventilation 500
Yin, Peng, et al. Residential bathroom exhaust fan energy performance evaluations conducted in a well-instrumented laboratory environment 508
Yu, Conson, et al. Study of ventilation parameters on indoor carbon dioxide and fine particulate matter concentrations 516
Zhang, Zhuopeng, et al. Research on indoor natural ventilation of enclosed housing estates in Guangzhou 520
Zhao, Haoliang, et al. Analysis and discussion of the indoor thermal environment of college teaching building during transition season when used natural ventilation 529
Zhou, Junli, et al. Calculation of single-sided ventilation due to unsteady wind pressure—Part 1 pulsating rate 538
Zhou, Junli, et al. Calculation of single-sided ventilation due to unsteady wind pressure—Part 2 mean flow rate and numerical simulation 546

Filtration and air cleaning

Afshari, Alireza, et al. Filtration of ultrafine particles from tobacco smoke using an ionizer in combination with an electrostatic fibrous filter 553
Afshari, Alireza, et al. Evaluating the effectiveness of two membranes in blocking chemicals 558
Aldred, Josh, et al. A method to estimate the health benefits of activated carbon filtration 564
Batault, Frédéric, et al. Influence of operating parameters of photocatalytic systems on the degradation of an indoor VOC mixture 570
Bivolarova, Mariya, et al. Efficiency of deodorant materials for ammonia reduction in indoor air 573
Blondeau, Patrice, et al. Experimental characterization and modeling of a functional wall covering removing formaldehyde from the indoor air 581
Boni, Andre, et al. PM2.5 & PM1 health impact and importance of changing filter standards in HVAC filtration 589
Capetillo, Azael, et al. In-Duct UVGI air sterilisation: optimisation study for high performance energy efficient systems 594
Chen, Ailu, et al. Indoor/outdoor pollutant relationships in an air-conditioned room during and after the 2013 haze in Singapore 603
Destaillats, Hugo, et al. Laboratory and field demonstration of energy-efficient VOC removal using a manganese oxide catalyst at room temperature 606
Fang, Lei, et al. Experimental study on energy performance of clean air heat pump 609
Feilberg, Anders et al. Application of PTR-MS for characterizing photocatalytic air cleaning of volatile organic compounds 617
Gao, Zhi et al. Experimental evaluation of pollutant emissions from room air cleaners 621
Ginestet, Alain et al. Performances, classification and impact on energy consumption of air filters for balanced ventilation systems with heat recovery for dwellings 624
Gonzalez, Luisa et al. Filtration performances of fibrous filters clogged with PM10 and microbial aerosols: influence of ventilation stops in lab-scale-HVAC-unit 633
Guo, Liujie et al. A survey on air filter’s usage situation of HVAC systems in China 641
Haep, Stefan et al. Filtration performance of particulate air filters for general ventilation, lab testing vs. real life 648
Han, KwangHoon et al. Indoor relative performance and challenges of activated carbon and non-AC filtration techniques in reducing high and low concentrations of outdoor pollutants-O3/NO2 652
Hasegawa, Asako et al. Mini-scale experiments to evaluate gaseous chemical removal efficiency of interior finishing materials 657
Havermans, John The Application of Mobile Air Cleaners using Negative Ions in Contaminated Entomology Repositories 663
Hou, Yuefei et al. Performance of air cleaners for removing gaseous and particulate pollutants 668
Hyun, Junho et al. Filtration and inactivation of aerosolized virus with air ion 676
Jacobs, Piet et al. Energy efficient reduction of fine and ultra-fine dust in a nursery 678
Joe, Yun haeng et al. Capturing and inactivation of airborne virus with SiO2-Ag nanoparticle coated air filter 686
Kagawa, Kenkichi et al. Dust removal performance of air purifier using ESP technology for PM2.5 and nanoparticles 689
Lee, Eon et al. Development of a High Efficiency Cabin Air (HECA) filtration system to reduce children’s exposure to air pollutants inside schools buses 693
Lee, Wan-Chen et al. Air purifier performance and the spatial variation in a single residential room 697
Li, Mu et al. An improved method for purification durability test of adsorption-type household air cleaners for volatile organic compounds 700
Liu, Lumeng et al. Development and validation of a state-of-the-art test rig for particulate and gaseous filtration evaluation for road vehicle air filters 707
Logue, Jennifer et al. Development and application of a physics-based simulation model to investigate residential PM2.5 composition and size distribution across the US 714
Lu, Yi , et al. Performance of low concentration ozone catalytic decomposition by CuO/MnO2 722
Ma, Huan et al. Experimental study of combustion characteristics of air filtration materials 730
Mcnabola, Aonghus, et al. The development and assessment of an energy efficient air pollution control device for building ventilation systems. 737
Mizutani, Chiyomi et al. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate 745
Morisseau, Kévin et al. Microbial particles release from preloaded fibrous filters at a simulated restart of ventilation in controlled conditions 750
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narita, Yasunori, et al.</td>
<td>Decomposition performance of air purifier using Streamer discharge technology for chemical substances adhering to PM2.5</td>
<td>758</td>
</tr>
<tr>
<td>Nishina, Hisato, et al.</td>
<td>A study on the odor substance countermeasure technology in the toilet space</td>
<td>763</td>
</tr>
<tr>
<td>Noh, Kwang-Chul, et al.</td>
<td>Study on effective air cleaning ranges of air cleaners in rooms</td>
<td>770</td>
</tr>
<tr>
<td>Oikawa, Daisuke, et al.</td>
<td>Reduction of indoor air concentration of formaldehyde by adsorptive polymer for preventing long term exposure effects in residences</td>
<td>773</td>
</tr>
<tr>
<td>Oyatogun, Oluwaseun, et al.</td>
<td>Indoor PM10 concentrations in a middle school classroom during pottery activities with and without air cleaners</td>
<td>778</td>
</tr>
<tr>
<td>Pham, Thanh-Dong, et al.</td>
<td>Application of metal doped TiO2/glass fiber for bioaerosol disinfection under visible light</td>
<td>784</td>
</tr>
<tr>
<td>Ptak, Thad, et al.</td>
<td>Impact of residential HVAC filtration on indoor concentration of PM1.0 and PM2.5 particulate matter</td>
<td>788</td>
</tr>
<tr>
<td>Rosén, Karl</td>
<td>The impact of electrostatic air cleaning in free-ranging egg production</td>
<td>796</td>
</tr>
<tr>
<td>Shaughnessy, Richard, et al.</td>
<td>Field testing to estimate ozone emission rates of in-duct air cleaners in occupied homes</td>
<td>803</td>
</tr>
<tr>
<td>Siegel, Jeffrey, et al.</td>
<td>A laboratory method for measuring ozone emission from in-duct air cleaners</td>
<td>808</td>
</tr>
<tr>
<td>Skwarczynski, Mariusz, et al.</td>
<td>Impact of ventilation and air conditioning systems on indoor air quality in a classroom</td>
<td>811</td>
</tr>
<tr>
<td>Su, Chunxiao, et al.</td>
<td>Applying real-time bioaerosol monitor to evaluate upper-room UVGI in Classroom</td>
<td>814</td>
</tr>
<tr>
<td>Trudell, Carmen</td>
<td>Dreaming about bricks: passive particulate filtration with wall-embedded cyclones</td>
<td>821</td>
</tr>
<tr>
<td>van der Graaf, Tim, et al.</td>
<td>Procedure to quantify long-term particle removal performance of household air purifiers</td>
<td>828</td>
</tr>
<tr>
<td>Vennekens, Davy, et al.</td>
<td>Lowering formaldehyde concentrations in the indoor air by using scavengers in gypsum products</td>
<td>832</td>
</tr>
<tr>
<td>Vizhemehr, Ali Khazraei, et al.</td>
<td>New developed framework for breakthrough curve prediction at typical indoor levels of concentration and relative humidity</td>
<td>840</td>
</tr>
<tr>
<td>Wang, Juan, et al.</td>
<td>Development of air cleaners based on the integration of advanced oxidation and water washing</td>
<td>848</td>
</tr>
<tr>
<td>Wu, Yiren, et al.</td>
<td>Experimental study on thickness shrinkage of fine fibrous media in gas-liquid coalescence filtration</td>
<td>853</td>
</tr>
<tr>
<td>Yuen, Wai, et al.</td>
<td>An energy efficient air filtration technique with acoustic radiation force and acoustic streaming</td>
<td>861</td>
</tr>
</tbody>
</table>
13th International Conference on Indoor Air Quality and Climate 2014

Hong Kong
7-12 July 2014

Volume 5 of 6
Part 1 of 2

Topics included in Volume V:

Measurement & prediction
Impact of outdoor environment IAQ and energy efficiency
IAQ in developing countries
IAQ in rapidly urbanizing cities
Education and issues
Productivity and economics
Community engagement
Policy, standards & regulations
List of contents

Measurement & prediction

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mccreddin, Andrew, et al.</td>
<td>Predicting the personal exposure of office workers to PM10 using differing modelling approaches</td>
<td>1</td>
</tr>
<tr>
<td>Askan, Tunc, et al.</td>
<td>3D annual building energy simulation with transient thermal comfort prediction</td>
<td>18</td>
</tr>
<tr>
<td>Askan, Tunc, et al.</td>
<td>3D decomposed particle tracking velocimetry</td>
<td>26</td>
</tr>
<tr>
<td>Bourdin, Delphine, et al.</td>
<td>Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air</td>
<td>34</td>
</tr>
<tr>
<td>Cao, Jianping, et al.</td>
<td>Measurement of gas-phase SVOCs using SPME: calibration method</td>
<td>37</td>
</tr>
<tr>
<td>Cao, Shi-Jie, et al.</td>
<td>Fast prediction of indoor pollutant dispersion based on low-dimensional reduced-order ventilation models</td>
<td>40</td>
</tr>
<tr>
<td>Cehlin, Mathias, et al.</td>
<td>Unsteady CFD simulations for prediction of airflow close to a supply device for displacement ventilation</td>
<td>47</td>
</tr>
<tr>
<td>Chen, Wenhao, et al.</td>
<td>Indoor dampness and mold as indicators of respiratory health risks, Part 6: comparison of chams simulation of the moisture content and water activity of gypsum wallboard to controlled laboratory measurements</td>
<td>63</td>
</tr>
<tr>
<td>Chen, Yixing, et al.</td>
<td>Energyplus and CHAMPS-Multizone co-simulation for energy and indoor air quality analysis</td>
<td>69</td>
</tr>
<tr>
<td>Ching, Michael, et al.</td>
<td>Energy performance of pre-conditioned air unit in Hong Kong international airport</td>
<td>77</td>
</tr>
<tr>
<td>Da, Guillaume, et al.</td>
<td>Predicting particle deposition in large circular ventilation ducts for non-fully developed turbulent flow: experiments and modelling</td>
<td>84</td>
</tr>
<tr>
<td>Dai, Yunchuang, et al.</td>
<td>Optimal control of variable speed parallel-connected pumps</td>
<td>87</td>
</tr>
<tr>
<td>Dallongeville, Arnaud, et al.</td>
<td>The asthm’child project: study of indoor exposure to chemical and biological air contaminants known or suspected to affect respiratory health</td>
<td>95</td>
</tr>
<tr>
<td>Dobiášová, Lucie, et al.</td>
<td>The indoor environment of an area with high occupancy</td>
<td>98</td>
</tr>
<tr>
<td>Duan, Ran, et al.</td>
<td>Transient simulation of air environment in airliner cabins during takeoff</td>
<td>106</td>
</tr>
<tr>
<td>Essah, Emmanuel, et al.</td>
<td>Effect of pollutants on the functionality of breathable roofing membranes in a bat roost</td>
<td>114</td>
</tr>
<tr>
<td>Feng, Xiaohang, et al.</td>
<td>Cluster analysis of questionnaire survey on occupant window operation modes</td>
<td>120</td>
</tr>
<tr>
<td>Gong, Mengyan, et al.</td>
<td>Phthalate metabolites in urine samples from Beijing children and relationships with phthalate levels in their handwipes</td>
<td>128</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Gormley, Michael, et al.</td>
<td>Bio-aerosol cross-transmission via the building drainage system</td>
<td>132</td>
</tr>
<tr>
<td>Hasegawa, Asako, et al.</td>
<td>Indoor air quality and climate of emergency temporary housing in Aso City, Kumamoto</td>
<td>140</td>
</tr>
<tr>
<td>He, Weibing, et al.</td>
<td>Experiment and simulation of radiant/convective split from passenger in aircraft cabins</td>
<td>147</td>
</tr>
<tr>
<td>Huang, Shaodan, et al.</td>
<td>Influence of temperature on the initial emittable concentration of formaldehyde in building materials: Interpretation and validation</td>
<td>155</td>
</tr>
<tr>
<td>Huang, Yan, et al.</td>
<td>Influence of sampling point distributions on the accuracy of indoor air environment measurements</td>
<td>158</td>
</tr>
<tr>
<td>Huang, Yu-Ju, et al.</td>
<td>The development of air quality wireless sensor network for indoor PM10 and PM2.5 prediction model</td>
<td>167</td>
</tr>
<tr>
<td>Kawaguchi, Makoto, et al.</td>
<td>Indoor dampness and mold as indicators of respiratory health risks, Part 7: a review of Microbial Volatile Organic Compounds (MVOCs) observed under damp conditions</td>
<td>173</td>
</tr>
<tr>
<td>Kim, Hyojin, et al.</td>
<td>Exploring methods to analyze and display continuously-measured time-series IEQ performance data</td>
<td>181</td>
</tr>
<tr>
<td>Knudsen, Sofie, et al.</td>
<td>Building characteristics that determine moisture in 105 Danish homes</td>
<td>197</td>
</tr>
<tr>
<td>Krajčík, Michal, et al.</td>
<td>System to monitor and control indoor environment for energy consumption optimization – a pilot study in a school building</td>
<td>205</td>
</tr>
<tr>
<td>Kurabuchi, Takashi, et al.</td>
<td>Measurement of capture efficiency of an exhaust hood in a commercial kitchen with disturbances</td>
<td>213</td>
</tr>
<tr>
<td>Lei, Lei, et al.</td>
<td>An inverse method to determine wall boundary convective heat fluxes in indoor environments</td>
<td>221</td>
</tr>
<tr>
<td>Liang, Weihui, et al.</td>
<td>Volatile organic compound emissions from a “wet” material assembly in a small-scale environmental chamber and in two real houses</td>
<td>229</td>
</tr>
<tr>
<td>Lin, Yi-Jiu peter, et al.</td>
<td>Experimental measurements of indoor air stratification in the space using an under-floor air distribution system</td>
<td>238</td>
</tr>
<tr>
<td>Liu, Cong, et al.</td>
<td>Predicting size distributions of particle associated SVOCs in indoor environments based on dynamic gas-particle mass transfer</td>
<td>241</td>
</tr>
<tr>
<td>Liu, Li, et al.</td>
<td>Transport of Expiratory Droplet Nuclei among Three Standing Manikins</td>
<td>246</td>
</tr>
<tr>
<td>Liu, Linlin, et al.</td>
<td>Numerical investigation on sampling process of an active SVOC sampler</td>
<td>254</td>
</tr>
<tr>
<td>Liu, Xiaoping, et al.</td>
<td>Evaluation of turbulence models for simulating flow and heat transfer in cross-corrugated triangular channels</td>
<td>257</td>
</tr>
<tr>
<td>Liu, Xiaoyu, et al.</td>
<td>Development of a small chamber method for SVOC sink effect study</td>
<td>264</td>
</tr>
<tr>
<td>Lo, James</td>
<td>Particle image velocimetry experiments in a wind tunnel to study wind-driven airflow through building openings</td>
<td>272</td>
</tr>
<tr>
<td>Mao, Yun-Feng, et al.</td>
<td>Predicting emissions and transport of semi-volatile organic compounds in indoor environments: a review on mechanistic models</td>
<td>280</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Markov, Detelin, et al.</td>
<td>Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation</td>
<td>288</td>
</tr>
<tr>
<td>Martuzevicius, Dainius, et al.</td>
<td>Characterization of indoor pollution sources for a real – time management of IAQ</td>
<td>296</td>
</tr>
<tr>
<td>McDonagh, Ann, et al.</td>
<td>A comparison of the sampling efficiency of bioaerosol samplers and particle counters in natural and controlled environments</td>
<td>299</td>
</tr>
<tr>
<td>McGrath, James, et al.</td>
<td>Simulating the effect of variations in emission source start times on indoor PM concentrations</td>
<td>304</td>
</tr>
<tr>
<td>Nasir, Zaheer, et al.</td>
<td>Exponential decay rate estimation using time-integrated aerosol sampling of variable duration</td>
<td>307</td>
</tr>
<tr>
<td>Nice, Jako</td>
<td>Air, surfaces and copper halos, interstitial microbial zones. Has it been measured; can it be predicted?</td>
<td>310</td>
</tr>
<tr>
<td>Nohr, Michael, et al.</td>
<td>Development of a reference material for emission testing based on lacquer systems</td>
<td>318</td>
</tr>
<tr>
<td>Ouaret, Rachid, et al.</td>
<td>Modelling the time fluctuation of indoor air formaldehyde concentration: variability structure identification and forecasting using nonlinear models</td>
<td>321</td>
</tr>
<tr>
<td>Plaisance, Herve, et al.</td>
<td>Field investigation on the indoor sinks of formaldehyde</td>
<td>329</td>
</tr>
<tr>
<td>Poulhet, Guillaume, et al.</td>
<td>In-situ measurements of volatile organic compound emissions from building materials using passive flux samplers</td>
<td>338</td>
</tr>
<tr>
<td>Qiu, Yang, et al.</td>
<td>Monitoring variability of indoor VOCs with novel continuous real-time sensor in low-income urban public housing in Boston, MA</td>
<td>346</td>
</tr>
<tr>
<td>Ramos, Joao, et al.</td>
<td>Indoor air quality audit in two office buildings in Portugal</td>
<td>353</td>
</tr>
<tr>
<td>Ren, Xiaoxin, et al.</td>
<td>A computational model for window-control action based on occupant behavior</td>
<td>361</td>
</tr>
<tr>
<td>Rennebarth, Thorsten, et al.</td>
<td>A new method for mould sampling at hard to access surfaces</td>
<td>369</td>
</tr>
<tr>
<td>Saarinen, Pekka, et al.</td>
<td>Air leakage through isolation room doorway – measurements and CFD simulations</td>
<td>380</td>
</tr>
<tr>
<td>Sadick, Abdul-Manan, et al.</td>
<td>Development of a protocol for measuring Indoor Environmental Quality (IEQ) in office and school buildings</td>
<td>388</td>
</tr>
<tr>
<td>Salmela, Anniina, et al.</td>
<td>Retention of penicillium brevicompactum fungal enzyme activity in environmental sample</td>
<td>396</td>
</tr>
<tr>
<td>Schripp, Tobias, et al.</td>
<td>Developing a reference source for formaldehyde emission testing of wooden building products</td>
<td>399</td>
</tr>
<tr>
<td>Sebroski, John, et al.</td>
<td>Evaluation of modified flec® cell and micro chamber prototype for monitoring Methylene Diphenyl Diisocyanate (MDI) emissions</td>
<td>402</td>
</tr>
<tr>
<td>Sekine, Yoshika, et al.</td>
<td>Simultaneous measurement of NO and NO2 by passive air sampler employing novel oxidative trapping filter for NO</td>
<td>410</td>
</tr>
<tr>
<td>Shen, Runlin, et al.</td>
<td>Measurement of moisture content in porous material by a hot wire</td>
<td>417</td>
</tr>
<tr>
<td>Soccio, Philippa</td>
<td>The Edu Tool: IEQ - a new post occupancy evaluation tool for communicating to building designers information about the indoor</td>
<td>425</td>
</tr>
</tbody>
</table>
environment quality inside classrooms

Sohn, Michael, et al. Measurements and model predictions of tracer gas transport in three multi-floor commercial buildings in Oklahoma city 434

Spizer, Reut, et al. A comprehensive survey of indoor radon levels in Israel 437

Su, Huey-Jen, et al. Comparison of continuous on-site measurement methods for tVOC monitoring regulated by Taiwan EPA in indoor air quality 445

Takenaka, Takeshi, et al. Analysis of influence of lifestyle and season on residential electric power consumption by using a fine-grained power sensing system 447

Tlili, Sabrine, et al. Wood plastic composite materials made from recycled waste wood and plastic: assessment of formaldehyde and VOC emissions 453

Tourreilles, Celine, et al. Coupled models to evaluate the interest of using air cleaners to reconcile indoor air quality and energy efficiency in buildings 458

Vignau-Laulhere, Jane, et al. Evaluation of two radial diffusive samplers for the measurement of formaldehyde in indoor air 466

Walser, Sandra, et al. Comparative measurements of bacteria and molds in indoor air 482

Wang, Shang, et al. Local wind and radiant thermal environment measurement using three spheres 487

Wilke, Olaf, et al. Determination of methanol and ethanol in test chamber air by using TDS-GC-FID 490

Xiong, Jianyin, et al. An early stage c-history method for measuring the characteristic parameters of SVOC emission from polymeric materials 492

Xu, Haixia, et al. Numerical analysis of contaminants mixing in a full-scale test chamber 495

Yanagi, U, et al. Indoor airborne, settled, and adhesive fungi in water-damaged houses after giant tsunami 504

Yu, H.C., et al. Validation of the bioaerosol deposition model in ventilated chamber 511

Zhao, Li, et al. Experimental investigation on the impact of atmospheric PM2.5 levels change on indoor environment 519

Impact of outdoor environment IAQ and energy efficiency

Adamkiewicz, Gary, et al. Differences in indoor environmental pollutants and air exchange between conventional and green public housing: a case study in Boston 527

Bae, Gwi-Nam, et al. Diurnal variation of vehicular air pollutants in a day-care center 529

Carvalho, Ricardo, et al. Changes of indoor climate by the adoption of proper wood-burning stoves worldwide 534

Chan, Wanyu, et al. Contaminant source strengths and ventilation rates in retail stores – implications to California’s building energy efficiency standards 542

Cui, Pengyi, et al. Wind tunnel experiments and multiscale modeling for effects of traffic exhausts on the indoor air quality within urban-scale regions 545

Das, Payel, et al. Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling 553
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fung, Cha-Chen, et al.</td>
<td>Infiltration of diesel exhaust into a mechanically ventilated building</td>
<td>556</td>
</tr>
<tr>
<td>Gao, Zhi, et al.</td>
<td>Analysis of the relationship between the residential street pattern and air quality in Nanjing city of China</td>
<td>559</td>
</tr>
<tr>
<td>Han, Jun, et al.</td>
<td>Improving thermal comfort in lightweight buildings of brick veneer walls with phase change materials</td>
<td>561</td>
</tr>
<tr>
<td>Hvidberg, Boerge, et al.</td>
<td>Detecting intrusion pathways of contaminated soil gas to indoor air and describing some remediation methods</td>
<td>569</td>
</tr>
<tr>
<td>Lee, Byung Hee, et al.</td>
<td>Indoor and outdoor PM10 concentrations during the Asian dust storm episodes in Korea</td>
<td>572</td>
</tr>
<tr>
<td>Lin, Man, et al.</td>
<td>The influence of viaduct and ground heating on pollutant dispersion within street canyons and from outdoor to indoor: gaseous pollutant and particle simulations</td>
<td>580</td>
</tr>
<tr>
<td>Liu, Yanchen, et al.</td>
<td>Study of the indoor environment quality of green building and conventional building in China</td>
<td>588</td>
</tr>
<tr>
<td>Maisey, Shannan, et al.</td>
<td>A reactive indoor air chemistry model study of ambient AQ influences in two cities</td>
<td>596</td>
</tr>
<tr>
<td>Nix, Emily, et al.</td>
<td>Shifting the balance of energy use and health impacts across Delhi’S housing stock</td>
<td>612</td>
</tr>
<tr>
<td>Qi, Ronghui, et al.</td>
<td>Cooling load and energy consumption of commercial building in main climate regions</td>
<td>620</td>
</tr>
<tr>
<td>Stranger, Marianne, et al.</td>
<td>Indoor air quality in relation to building envelope characteristics of low-energy and passive schools in Belgium</td>
<td>626</td>
</tr>
<tr>
<td>Stranger, Marianne, et al.</td>
<td>Comparison of the indoor air quality of low-energy and passive schools and dwellings with traditional buildings in Belgium</td>
<td>629</td>
</tr>
<tr>
<td>Tang, Yuqiao, et al.</td>
<td>PM2.5 concentration analysis of different environmental impacts at different locations around Tsinghua University in Beijing</td>
<td>633</td>
</tr>
<tr>
<td>Valoušková, Kristýna</td>
<td>Heat losses and gains depending on the size of double transparent facade cavity</td>
<td>639</td>
</tr>
<tr>
<td>Yang, Xiaoshan, et al.</td>
<td>Long-timescale simulation of the effects of microclimate on building energy performance</td>
<td>648</td>
</tr>
<tr>
<td>Zhang, Xiaobo, et al.</td>
<td>A hygrothermal research on energy efficiency and moisture condensation control for building enclosures in mixed climate zone</td>
<td>651</td>
</tr>
<tr>
<td>Zhou, Jin, et al.</td>
<td>Particle exposure during the 2013 haze in Singapore</td>
<td>658</td>
</tr>
</tbody>
</table>

IAQ in developing countries

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali, Zulfiqar, et al.</td>
<td>Monitoring of PM2.5 arising from different cooking fuels in rural residential houses</td>
<td>661</td>
</tr>
<tr>
<td>Barabad, Mona Loraine, et al.</td>
<td>A study of indoor air pollutants from cooking emissions</td>
<td>673</td>
</tr>
<tr>
<td>Carter, Ellison, et al.</td>
<td>Laboratory performance of advanced combustion biomass stoves in reducing household air pollution</td>
<td>678</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Carvalho, Ricardo, et al.</td>
<td>Impacts of two improved wood-burning stoves on the indoor air quality: practices in Peru and Brazil</td>
<td>680</td>
</tr>
<tr>
<td>Chen, Min, et al.</td>
<td>Study on characteristics of people flow in general hospitals in and out of China</td>
<td>688</td>
</tr>
<tr>
<td>Cheng, Li, et al.</td>
<td>Analysis of the current indoor air quality of large commercial buildings in Chongqing area during summer period</td>
<td>696</td>
</tr>
<tr>
<td>Hyttinen, Marko, et al.</td>
<td>Particles, VOCs and lighter PAHs in kitchens using biomass fuels</td>
<td>704</td>
</tr>
<tr>
<td>Lee, Kiyoung, et al.</td>
<td>Implication of cow dung combustion in developing countries based on emission characterization</td>
<td>707</td>
</tr>
<tr>
<td>Li, Jiarong, et al.</td>
<td>Laboratory study of pollutant emissions from wood charcoal combustion for indoor space heating in China</td>
<td>710</td>
</tr>
<tr>
<td>Li, Yanju, et al.</td>
<td>Investigation and evaluation of bacterial contaminant in classrooms and dormitories of college students in winter: a study in a university of Tianjin, China</td>
<td>717</td>
</tr>
<tr>
<td>Majumdar, Dipanjali, et al.</td>
<td>Effect of furnishing in the mixing ratio of NMVOC: a case study</td>
<td>722</td>
</tr>
<tr>
<td>Ongwandee, Maneerat, et al.</td>
<td>Distribution of airborne BTEX concentrations within petrol stations</td>
<td>730</td>
</tr>
<tr>
<td>Panchal, Pritam, et al.</td>
<td>Monitoring of indoor air quality in slums of Mumbai city, Mumbai</td>
<td>737</td>
</tr>
<tr>
<td>Safdar, Sidra, et al.</td>
<td>Assessment of airborne microflora in residential houses in Lahore, Pakistan</td>
<td>745</td>
</tr>
<tr>
<td>Shan, Ming, et al.</td>
<td>Characterizing indoor real-time PM2.5 emissions from cooking and space heating stoves in Northern China</td>
<td>749</td>
</tr>
<tr>
<td>Zhang, Junfeng (Jim), et al.</td>
<td>Household coal combustion: exposure to toxic pollutants and health effects</td>
<td>756</td>
</tr>
</tbody>
</table>

IAQ in rapidly urbanizing cities

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang, Jianxiang, et al.</td>
<td>Microclimate and outdoor leisure activities in China’s residential communities: the Wuhan experiment</td>
<td>760</td>
</tr>
<tr>
<td>Kim, Min Sung, et al.</td>
<td>A study on measuring the indoor environment for determining dew condensation at the underground utility tunnel during winter</td>
<td>770</td>
</tr>
<tr>
<td>kim, Yoon-Shin, et al.</td>
<td>Characteristics of NO2 and HONO concentrations in homes</td>
<td>777</td>
</tr>
<tr>
<td>kim, Yoon-Shin, et al.</td>
<td>Effectiveness of air purifier on IAQ in living environments of sensitive population</td>
<td>783</td>
</tr>
<tr>
<td>kim, Yoon-Shin, et al.</td>
<td>Effects of air purifier on change of atopic dermatitis and indoor air quality</td>
<td>788</td>
</tr>
<tr>
<td>Lai, Ka Man, et al.</td>
<td>IAQ and environmental hygiene analysis in subdivided units in Hong Kong</td>
<td>794</td>
</tr>
<tr>
<td>Li, Wen-Whai, et al.</td>
<td>Measurements of traffic-related indoor-outdoor air pollution at elementary schools in a cross-border urbanized metroplex</td>
<td>802</td>
</tr>
<tr>
<td>Liu, Yulong, et al.</td>
<td>A fast and simple tool to assess indoor environment quality of residential buildings at the stage of schematic design</td>
<td>806</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Pei, Zufeng, et al.</td>
<td>The comparison study of indoor environment quality between design goal and actual performance for green buildings in China</td>
<td>821</td>
</tr>
<tr>
<td>Yang, Fenhuan, et al.</td>
<td>Comprehensive evaluation of passenger exposure to particulate air pollution in Hong Kong public transit systems</td>
<td>829</td>
</tr>
<tr>
<td>Yoon, Jaeock</td>
<td>Analyzing indoor air quality in airtight environments in new apartments in Korea with the help of field measurement devices</td>
<td>832</td>
</tr>
<tr>
<td>Yue, Yang, et al.</td>
<td>Measurement of carbonyls in residential indoor air during summer in Beijing</td>
<td>840</td>
</tr>
<tr>
<td>Wang, Zhiqiang, et al.</td>
<td>The investigation of indoor air quality at high-rise residential buildings in China: a pilot study</td>
<td>847</td>
</tr>
<tr>
<td>Wei, Wenjuan, et al.</td>
<td>Influence of China’s building energy efficiency policy on urban indoor formaldehyde exposure</td>
<td>855</td>
</tr>
<tr>
<td>Zhang, Huibo, et al.</td>
<td>A detailed survey on indoor air quality and children’s health in Shanghai</td>
<td>858</td>
</tr>
<tr>
<td>Mandal, Anubha, et al.</td>
<td>Health threat by biomass cooking fuels on infants- a case study</td>
<td>866</td>
</tr>
<tr>
<td>Mora, Rodrigo, et al.</td>
<td>Building science integrated systems: methodology for residential indoor air quality investigations</td>
<td>874</td>
</tr>
<tr>
<td>Boerstra, Atze, et al.</td>
<td>Personal control over indoor climate and productivity</td>
<td>891</td>
</tr>
<tr>
<td>Borisová, Lucia</td>
<td>The cost optimal methodology of dwelling house in Slovak Republic (determination of optimal heat transfer coefficients for dwelling house)</td>
<td>899</td>
</tr>
<tr>
<td>Jönsson, Arne</td>
<td>The optimal air rate with regard to economic growth and smoking from weber-fechner's law</td>
<td>904</td>
</tr>
<tr>
<td>Jönsson, Arne</td>
<td>The value of ventilation from the weber-fechner's law</td>
<td>912</td>
</tr>
<tr>
<td>Jumeno, Desto, et al.</td>
<td>Utilization of foliage plants on the design of eco-ergonomic office</td>
<td>920</td>
</tr>
<tr>
<td>Kuzuu, Eriko, et al.</td>
<td>Productivity and indoor environmental quality of research institution with refreshment and communication area</td>
<td>927</td>
</tr>
<tr>
<td>Mandin, Corinne, et al.</td>
<td>Socio-economic costs due to indoor air pollution: a tentative estimation for France</td>
<td>934</td>
</tr>
<tr>
<td>Tsushima, Sayana, et al.</td>
<td>Workers’ awareness and indoor environmental quality in power-saving offices</td>
<td>938</td>
</tr>
<tr>
<td>Wargocki, Pawel, et al.</td>
<td>Socio-economic consequences of improved indoor air quality in Danish primary schools</td>
<td>953</td>
</tr>
<tr>
<td>Noguchi, Miyuki, et al.</td>
<td>Correlation between the odor concentration and the VOC composition of tobacco smoke</td>
<td>959</td>
</tr>
</tbody>
</table>

Education and issues

- Mandal, Anubha, et al. Health threat by biomass cooking fuels on infants- a case study 866
- Mora, Rodrigo, et al. Building science integrated systems: methodology for residential indoor air quality investigations 874

Productivity and economics

- Boerstra, Atze, et al. Personal control over indoor climate and productivity 891
- Borisová, Lucia The cost optimal methodology of dwelling house in Slovak Republic (determination of optimal heat transfer coefficients for dwelling house) 899
- Jönsson, Arne The optimal air rate with regard to economic growth and smoking from weber-fechner's law 904
- Jönsson, Arne The value of ventilation from the weber-fechner's law 912
- Jumeno, Desto, et al. Utilization of foliage plants on the design of eco-ergonomic office 920
- Kuzuu, Eriko, et al. Productivity and indoor environmental quality of research institution with refreshment and communication area 927
- Mandin, Corinne, et al. Socio-economic costs due to indoor air pollution: a tentative estimation for France 934
- Tsushima, Sayana, et al. Workers’ awareness and indoor environmental quality in power-saving offices 938
- Wargocki, Pawel, et al. Socio-economic consequences of improved indoor air quality in Danish primary schools 953

Community engagement

- Noguchi, Miyuki, et al. Correlation between the odor concentration and the VOC composition of tobacco smoke 959
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andamon, Mary Myla,</td>
<td>Thermal environments and indoor air quality of P-12 educational facilities in Australia: a critical review of standards, regulations and policies</td>
<td>964</td>
</tr>
<tr>
<td>Bae, Chihye, et al.</td>
<td>A study on social technology development strategy for energy welfare improvement</td>
<td>973</td>
</tr>
<tr>
<td>Fleming, Edwina, et</td>
<td>The South African legislative environment, in critical need of scientific evidence based alignment for airborne control</td>
<td>975</td>
</tr>
<tr>
<td>Francisco, Paul</td>
<td>ASHRAE Standard 62.2: what’s new and why</td>
<td>983</td>
</tr>
<tr>
<td>Grimes, Carl</td>
<td>Measurements and descriptors for occupant behavior and occupant experience</td>
<td>989</td>
</tr>
<tr>
<td>Kim, Jeonghoon, et al.</td>
<td>Effects of the smoke-free laws on air quality, biomarker levels in urine and health effects of staffs in Korean restaurants and pubs</td>
<td>998</td>
</tr>
<tr>
<td>Laffargue, Caroline,</td>
<td>Harmonization of VOC emissions testing in Europe – the new standard CEN/TS 16516</td>
<td>1001</td>
</tr>
<tr>
<td>Mason, Stephany, et al.</td>
<td>Limit values for VOC emissions from construction and decorative products around the globe</td>
<td>1012</td>
</tr>
<tr>
<td>Nehr, Sascha, et al.</td>
<td>ISO/TC 146/SC 6 — setting international standards for the assessment of indoor air quality</td>
<td>1020</td>
</tr>
<tr>
<td>Oh, Suhyun, et al.</td>
<td>Development of the IAQ certification scheme for public use facilities in Korea</td>
<td>1027</td>
</tr>
<tr>
<td>Persily, Andrew</td>
<td>Indoor Air Quality in high performance buildings: what is and isn’t in ASHRAE/IES/USGBC Standard 189.1</td>
<td>1030</td>
</tr>
<tr>
<td>Pouzaud, Francois, et al.</td>
<td>Setting of chronic indoor air quality guideline for nitrogen dioxide: evidence-based approach using epidemiological studies</td>
<td>1038</td>
</tr>
<tr>
<td>Schiavon, Stefano, et al.</td>
<td>Influence of factors unrelated to environmental quality on occupant satisfaction in leed and non-leed certified buildings</td>
<td>1041</td>
</tr>
<tr>
<td>Sukarno, Iwan, et al.</td>
<td>Factors affecting residential energy consumption in regional cities of Indonesia</td>
<td>1049</td>
</tr>
<tr>
<td>Wai, Kee-Neng, et al.</td>
<td>“Big Data” for IAQ profile monitoring and building management</td>
<td>1057</td>
</tr>
<tr>
<td>Wargocki, Pawel, et al.</td>
<td>Guidelines for health-based ventilation in Europe</td>
<td>1067</td>
</tr>
<tr>
<td>Ye, Wei, et al.</td>
<td>A preliminary ventilation rate study for residential buildings and offices based on VOC emission database</td>
<td>1070</td>
</tr>
<tr>
<td>Yoo, Seung-Ho, et al.</td>
<td>The institutional evaluation standard for solar architecture</td>
<td>1078</td>
</tr>
</tbody>
</table>
Topics included in Volume VI:

- Respiratory infection in indoor environment
- New chemical substances in buildings
- Nanoparticles in indoor environment
- Climate change and indoor environment
- Environmental impact of buildings
- Low energy buildings
- Transport cabin environments
- Smart and mobile technologies
- Wireless sensors and smartphone monitoring of indoor environment
- Gene-sequencing and bio-informatics for indoor microbiology studies
- New bio-monitoring technologies for indoor applications
- Plenary talks
List of contents

Respiratory infection in indoor environment

Arai, Keitaro, et al. Evaluation of infection-control effectiveness through use of an infection-control bed 1
Azimi, Parham, et al. HVAC filtration for controlling airborne influenza transmission in indoor environments: predicting risk reductions and operational costs 9
Chen, Chun, et al. Developing simplified models for the exhaled airflow from a cough with the mouth covered 12
Gao, Caroline, et al. Lack of influenza transmission to an inhaling life-like manikin from naturally influenza-infected human volunteers 20
Hirase, Kota, et al. Visualization of air flow patterns in human respiratory tract by particle image velocimetry 28
Kadota, Yosuke, et al. Development of computer simulated person with numerical airway model. Part 3: breathing air quality prediction using improved unsteady breathing flow model 32
Matsuo, Toshiki, et al. Development of computer simulated person with numerical airway model. Part 1 analysis of breathing contaminant concentration and respiratory exposure 37
Mendes, Ana, et al. Respiratory health in older people living in elderly care centers in Portugal 42
Morimoto, Shoichi, et al. Reduction of droplet nuclei in 4 bed room 45
Ogata, Masayuki, et al. Size of multibed patient room and airborne infection risk 52
Sung, Minki, et al. Estimating of the air migration from negative pressure isolation ward by the movements of staffs using network model 58
Taylor, Jonathon, et al. Tuberculosis transmission: modelled impact of air-tightness in dwellings in the UK 60
Wang, Jiahui, et al. Decorated housing environment and its associations with asthma and allergies among Chongqing pre-school children 68
Wei, Jianjian, et al. Inhalation of exhaled flow during human normal (nasal) breathing 76
Yang, Caiqing, et al. Person to person airborne particles cross transmission in vertical laminar air flow room 82
Yang, Wenwen, et al. The airborne transmission of infection due to the stack effect in high-rise residential buildings 90
Mousavi, Ehsan, et al. Ventilation and transport of bioaerosols in healthcare environment- new insight into hospital corridor design 113
New chemical substances in buildings

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanchard, Olivier, et al.</td>
<td>Semi-volatile organic compounds in indoor air and settled dust in 30 French dwellings</td>
<td>121</td>
</tr>
<tr>
<td>Huang, Chun-nan, et al.</td>
<td>The associations between phthalates in indoor dust and house-cleaning habits</td>
<td>130</td>
</tr>
<tr>
<td>Jiang, Fang, et al.</td>
<td>Catalytic combustion of ethyl acetate on Al2O3 supported chromia catalysts</td>
<td>134</td>
</tr>
<tr>
<td>Lazarov, Borislav, et al.</td>
<td>Optimisation of an innovative sampling method for air sampling flame retardants</td>
<td>137</td>
</tr>
<tr>
<td>Le Bot, Barbara, et al.</td>
<td>Neurotoxic Semi Volatile Organic Compounds (SVOCs) in house settled dust: contamination and determinants</td>
<td>140</td>
</tr>
<tr>
<td>Mandin, Corinne, et al.</td>
<td>ECOS-POUSS: a nationwide survey of semi-volatile organic compounds in home settled dust</td>
<td>143</td>
</tr>
<tr>
<td>Mandin, Corinne, et al.</td>
<td>ECOS-PM: a nationwide survey of semi-volatile organic compounds in indoor air</td>
<td>149</td>
</tr>
<tr>
<td>Poppendieck, Dustin, et al.</td>
<td>Long term emissions from spray polyurethane foam insulation</td>
<td>154</td>
</tr>
<tr>
<td>Xu, Ying, et al.</td>
<td>Phthalates and PBDES in retail stores</td>
<td>157</td>
</tr>
</tbody>
</table>

Nanoparticles in indoor environment

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekö, Gabriel, et al.</td>
<td>Ultrafine particles in 60 Danish homes: measurements in the homes and personal monitoring</td>
<td>160</td>
</tr>
<tr>
<td>Bohgard, Mats, et al.</td>
<td>Human exposure studies of airborne particles from common sources</td>
<td>163</td>
</tr>
<tr>
<td>Buonanno, Giorgio, et al.</td>
<td>Measurement of cooking-generated particle charge</td>
<td>166</td>
</tr>
<tr>
<td>Chen, Yen-Ping, et al.</td>
<td>Exposure to and health risk assessment for particulate matters and polycyclic aromatic hydrocarbons from household cooking in Taiwan</td>
<td>170</td>
</tr>
<tr>
<td>Wu, Xin, et al.</td>
<td>Characteristics of fine particles and black carbon emitted from different Chinese cooking methods</td>
<td>181</td>
</tr>
<tr>
<td>Wu, Yi-Ying, et al.</td>
<td>Removal of monodisperse and polydisperse submicron particles in a stainless steel test chamber by using a negative air ionizer</td>
<td>189</td>
</tr>
</tbody>
</table>

Climate change and indoor environment

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimblecombe, Peter</td>
<td>The impact of indoor air on historic interiors under climate change</td>
<td>193</td>
</tr>
<tr>
<td>Hsu, Nai-Yun, et al.</td>
<td>Predictive model of indoor temperature from ambient levels</td>
<td>199</td>
</tr>
<tr>
<td>Jaakkola, Jouni</td>
<td>Public health impact of indoor dampness and mold problems in the context of climate change</td>
<td>205</td>
</tr>
<tr>
<td>Jantunen, Matti</td>
<td>Greenhouse effect and climate change – and indoor air</td>
<td>207</td>
</tr>
<tr>
<td>Lee, Daeyeop, et al.</td>
<td>Indoor and outdoor thermal conditions in three types of economically disadvantaged residences during summer</td>
<td>211</td>
</tr>
<tr>
<td>Pakpour, Sepideh, et al.</td>
<td>Climatic drivers of airborne fungal spore concentrations in two North</td>
<td>213</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Sailor, David</td>
<td>Risks of extreme thermal conditions in buildings associated with climate change and exacerbation of the urban heat island</td>
<td>217</td>
</tr>
<tr>
<td>Simone, Angela, et al.</td>
<td>Analyses of passive cooling strategies’ effect on overheating in low-energy residential buildings in Danish climate</td>
<td>220</td>
</tr>
<tr>
<td>Vardoulakis, Sotiris, et al.</td>
<td>Health effects of climate change in the UK indoor environment – a critical review</td>
<td>223</td>
</tr>
<tr>
<td>Wang, Zhaoxia, et al.</td>
<td>Study on the design schemes of fresh air supplement in office buildings</td>
<td>226</td>
</tr>
</tbody>
</table>

Environmental impact of buildings

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayer, Charlene</td>
<td>Materials transparency programs, emissions testing, and health impacts</td>
<td>235</td>
</tr>
<tr>
<td>Kim, Si Eun, et al.</td>
<td>A study on the thermal effects of green roof system in an existing building</td>
<td>242</td>
</tr>
<tr>
<td>Krejcirikova, Barbora, et al.</td>
<td>Waste-based materials; capability, application and impact on indoor environment – literature review</td>
<td>248</td>
</tr>
<tr>
<td>Liu, Jiying, et al.</td>
<td>The impact of surface convective heat transfer coefficients on the simulated building energy consumption and surface temperatures</td>
<td>256</td>
</tr>
<tr>
<td>Teichman, Kevin, et al.</td>
<td>Indoor air quality: the forgotten, yet critical, element in sustainable buildings</td>
<td>265</td>
</tr>
<tr>
<td>Wang, Kai, et al.</td>
<td>Impact of urban building morphology on air temperature: a case study in the stone forest</td>
<td>273</td>
</tr>
<tr>
<td>Wang, Xiaoxue, et al.</td>
<td>Understanding and modelling urban-breeze circulation by up-scaling CFD</td>
<td>276</td>
</tr>
<tr>
<td>Wang, Yi, et al.</td>
<td>Urban moisture balance in Hong Kong</td>
<td>279</td>
</tr>
<tr>
<td>Yang, Jin-ho, et al.</td>
<td>How to apply approved LEED simulation for sustainable buildings in Japan</td>
<td>282</td>
</tr>
<tr>
<td>Yang, Xinyan, et al.</td>
<td>Solar radiation heat gain in an urban area</td>
<td>289</td>
</tr>
<tr>
<td>Yin, Shi, et al.</td>
<td>The rising of urban buoyant plume from high-rise compact buildings in turbulent crossflows</td>
<td>292</td>
</tr>
<tr>
<td>Yin, Shi, et al.</td>
<td>Water tank investigation of single and multiple buoyant plumes from squared blocks in calm environment</td>
<td>295</td>
</tr>
<tr>
<td>Zhao, Lihua, et al.</td>
<td>Study on outdoor thermal environment of village in pearl river delta region</td>
<td>298</td>
</tr>
<tr>
<td>Chow, Tin-Tai, et al.</td>
<td>Effectiveness of green roof as thermal barrier for air-conditioned offices in Hong Kong</td>
<td>305</td>
</tr>
</tbody>
</table>

Low energy buildings

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akimoto, Takashi, et al.</td>
<td>Performance evaluation on double multi GHP in school building</td>
<td>308</td>
</tr>
<tr>
<td>Bagoňa, Miloslav, et al.</td>
<td>Improvement of indoor environment and its effect on the heat demand for heating and cooling of house</td>
<td>310</td>
</tr>
<tr>
<td>Croitoru, Cristiana, et al.</td>
<td>Innovative solar facade implementation in low energy buildings</td>
<td>316</td>
</tr>
<tr>
<td>Derbez, Mickaël, et al.</td>
<td>Longitudinal study of indoor air quality and comfort of two low-energy single-family houses</td>
<td>324</td>
</tr>
</tbody>
</table>
Derbez, Mickaël, et al. French national data collection system on indoor air quality and comfort in energy-efficient buildings 332
Feng, Jingjuan (Dove), et al. Critical review of water based radiant cooling system design methods 337
Gong, Nan, et al. Air flow setback strategies for hospital energy saving 345
Gong, Nan, et al. Air flow rate control strategies and energy saving for operating rooms 353
Harada, Naoyuki, et al. Taking into account heat and daylight to verify and improve a multistory double-skin facade 360
Hartikainen, Samuel, et al. Semi-volatile and volatile organic compounds in low-energy and conventionally built houses 368
Huang, Yu, et al. Experimental study on performance of interior blind in office buildings in Hong Kong 371
Huang, Yu, et al. Simulation study of shading design performance in office buildings in cooling-dominant climates 379
Hwang, Hyokeun, et al. Analysis of the convection-radiation heat dissipation from the equipment for the development of liquid cooling air-conditioning system 387
Iatauro, Domenico, et al. Assessment of the thermal comfort conditions in an high efficiency energy renovation of an Italian school building 392
Jeong, Ah Hee, et al. Performance evaluation of air-bubble sheets as a thermal insulator for window system 401
Kajiya, Ryoichi, et al. Measurement and CFD analysis of the temperature and air velocity distribution in a double skin 408
Kawahara, Daisuke, et al. Low-energy effectiveness of dynamic insulation system for windows 416
Kitagawa, Shogo, et al. Life cycle energy management for the heat source of large-scale hospital preliminary design of heat source system 424
Kmeťková, Jana, et al. Cost optimal evaluation of energy performance requirements on apartment buildings to comply with the energy performance of buildings directive 432
Knudsen, Henrik, et al. Indoor climate perceived as improved after energy retrofitting of single-family houses 440
Kobayashi, Kentaro, et al. Using natural ventilation with water mist sprayers for data center energy conservation 448
Lai, Chi-Ming, et al. Energy-saving potential of building envelope designs in residential houses in Taiwan 455
Langer, Sarka, et al. Indoor environment in Swedish passive houses 459
Laverge, Jelle, et al. Air leakage and compliance with building code ventilation requirements in low energy dwellings and schools in Belgium 466
Lee, Suk-Joo, et al. Heating and cooling energy performance of commercial buildings 474
Liu, Peng, et al. Frosting limits for counter-flow Membrane Energy Exchanger (MEE) in cold climates 488
Liu, Xiaoping, et al. An optimal design analysis method for heat recovery heat exchangers in building applications 497
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv, Liugen, et al.</td>
<td>Comparative study on radiant heat transfer in building inner surface based on different radiant models</td>
</tr>
<tr>
<td>Maccarini, Alessandro, et al.</td>
<td>Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings</td>
</tr>
<tr>
<td>McGill, Gráinne, et al.</td>
<td>Comparison of indoor air quality in mechanically ventilated and naturally ventilated social housing - a case study</td>
</tr>
<tr>
<td>Meng, Zhaozhou, et al.</td>
<td>“Magic cube”: an integrated and coordinated process for performance-based building design</td>
</tr>
<tr>
<td>Moon, Hyeun, et al.</td>
<td>Evaluation of simulation based control for a VRF system with different simulation time-steps</td>
</tr>
<tr>
<td>Moon, Hyeun Jun, et al.</td>
<td>Model based predictive control for radiant floor heating system in a residential building</td>
</tr>
<tr>
<td>Moon, Hyeun Jun, et al.</td>
<td>Measurement and verification for an energy performance evaluation in buildings with BEMS</td>
</tr>
<tr>
<td>Ooi, Koon beng, et al.</td>
<td>A sustainable retrofit and a better quality indoor air for a brick-veneer, raised-floor house in Victoria, Australia?</td>
</tr>
<tr>
<td>Poppendieck, Dustin, et al.</td>
<td>Long term air quality monitoring in a net-zero energy residential test facility designed with specifications for low emitting interior products</td>
</tr>
<tr>
<td>Rey, Francisco, et al.</td>
<td>IAQ and thermal comfort evaluation in a Spanish modern low-energy office with Thermally Activated Building (TAB) systems</td>
</tr>
<tr>
<td>Schoemaeker, Coralie, et al.</td>
<td>Experimental and modeling characterizations of indoor air quality in low energy public buildings in France – the MERMAID program</td>
</tr>
<tr>
<td>Silva, Nuno Alexandre, et al.</td>
<td>Do certified buildings enhance indoor environmental quality and performance of office work?</td>
</tr>
<tr>
<td>Stutterecker, Werner, et al.</td>
<td>A low energy apartment house – a case study about energy and thermal comfort</td>
</tr>
<tr>
<td>Sudo, Toshihiko, et al.</td>
<td>Performance verification of the integrated optical air duct system (air-conditioning duct performance)</td>
</tr>
<tr>
<td>Tsay, Yaw-Shyan, et al.</td>
<td>Study on strategies for zero energy home design in Taiwan – a case study of a residential house in Yunlin</td>
</tr>
<tr>
<td>Verriele, Marie, et al.</td>
<td>Do Low Energy Public Buildings (LEPB) comply with the recent IAQ regulations in France? What about unregulated VOC?</td>
</tr>
<tr>
<td>Wang, Fang, et al.</td>
<td>Field experiments on the thermal performance of double skin façade building in hot summer</td>
</tr>
<tr>
<td>Wang, Yi, et al.</td>
<td>Effectiveness of Ultraviolet Germicidal Irradiation (UVGI) systems in air handling units in enhancing energy performance</td>
</tr>
<tr>
<td>Xue, Fei, et al.</td>
<td>A fast calculation method for indoor heat gain of external respiration double-skin façades in cooling season</td>
</tr>
<tr>
<td>Yang, Le, et al.</td>
<td>Establishing energy consumption quota for assessing a group of government office buildings</td>
</tr>
<tr>
<td>Yau, Yat, et al.</td>
<td>Feasibility study of using heat recovery devices in HVAC systems in a building in the tropics</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>You, Wei, et al.</td>
<td>Energy analysis of building exterior opening design using integrated simulation of day-lighting, thermal performance and natural ventilation</td>
</tr>
<tr>
<td>Yuan, Chen, et al.</td>
<td>“Virtual Design Studio” for hot and humid climate in China</td>
</tr>
<tr>
<td>Zhang, Shuo, et al.</td>
<td>Low energy buildings integrated nocturnal radiation cooling and thermal energy storage</td>
</tr>
<tr>
<td>Zhang, Xiaojie, et al.</td>
<td>A review on hybrid ventilation</td>
</tr>
<tr>
<td>Zhang, Xiyao, et al.</td>
<td>The PCM-water emulsion with low supercooling</td>
</tr>
<tr>
<td>Zhao, Deyin, et al.</td>
<td>A field survey study on energy consumption of office buildings with VRV system</td>
</tr>
<tr>
<td></td>
<td>Transport cabin environments</td>
</tr>
<tr>
<td>Abadie, Marc, et al.</td>
<td>Indoor air quality in metro systems: a survey</td>
</tr>
<tr>
<td>Cao, Xiaodong, et al.</td>
<td>High power 2D-PIV application in the measurement of air distribution in an aircraft cabin mockup</td>
</tr>
<tr>
<td>Chang, Li-Te, et al.</td>
<td>The effects of in-cabin exposures to multi-sized particulate matters and carbon monoxide on changes in heart rate variability for healthy public transit commuters</td>
</tr>
<tr>
<td>Chen, Xiaokai, et al.</td>
<td>Objective assessment of airborne benzene and its homologues</td>
</tr>
<tr>
<td>Cho, Youngmin, et al.</td>
<td>Effect of emissions from diesel locomotives on indoor air quality of passenger cabin</td>
</tr>
<tr>
<td>Cho, Youngmin, et al.</td>
<td>Effect of additional insulation panel on average temperature in subway cabin during heating</td>
</tr>
<tr>
<td>Conceição, Sandro, et al.</td>
<td>CFD and experimental study of expiratory droplets inside an aircraft cabin mock-up</td>
</tr>
<tr>
<td>Guan, Jun, et al.</td>
<td>Source contributions and control strategies of Volatile Organic Compounds (VOCs) in aircraft cabins</td>
</tr>
<tr>
<td>Houtzager, Marc, et al.</td>
<td>Airliner cabin air quality: emissions of organophosphates originating from aircraft engine oil. Experimental lab simulation and measurements on flight.</td>
</tr>
<tr>
<td>Kim, Kyu-Jeong, et al.</td>
<td>Evaluation of VOCs emissions from car interior console assembly and unit components</td>
</tr>
<tr>
<td>Kim, Man-Goo, et al.</td>
<td>Method for the determination of the emission of volatile organic chemicals from unit-component of car interior by using static chamber</td>
</tr>
<tr>
<td>Kwon, Soon-Bark, et al.</td>
<td>Efficiency of the Subway Cabin Air Purifier (SCAP) for removing particulate matters in a subway cabin indoor</td>
</tr>
<tr>
<td>Langer, Sarka, et al.</td>
<td>Indoor environment on-board the Swedish icebreaker oden</td>
</tr>
<tr>
<td>Lee, In-Ryeol, et al.</td>
<td>The cause material assessment of emitted VOCs at unit component by using the test method of cut part of vehicle interior</td>
</tr>
<tr>
<td>Li, Bingye, et al.</td>
<td>Experimental study of cabin thermal comfort and air quality at different seasons</td>
</tr>
<tr>
<td>Li, Qiong, et al.</td>
<td>A case study of the effect of parking vehicle on the outdoor thermal environment</td>
</tr>
<tr>
<td>Li, Zheng, et al.</td>
<td>Source apportionment of particles in aircraft cabins: a preliminary</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ma, Pengzhen, et al.</td>
<td>Prediction of inner aircraft surface temperature based on the onboard and the outboard coupling study on the possible effect of aircraft age</td>
</tr>
<tr>
<td>Rai, Aakash, et al.</td>
<td>Modeling of ozone-initiated VOC emissions from reactions with human-worn clothing in an aircraft cabin</td>
</tr>
<tr>
<td>Rosén, Karl</td>
<td>In-cabin air quality – electrostatic field to capture sub-micron size particles</td>
</tr>
<tr>
<td>Wang, Congcong, et al.</td>
<td>Accurate experimental measurements of flow boundary conditions for numerical simulations in an aircraft cabin mockup</td>
</tr>
<tr>
<td>Wang, Jihong, et al.</td>
<td>Inverse design of aircraft cabin environment based on proper decomposition of thermo-flow fields</td>
</tr>
<tr>
<td>Wei, Yun, et al.</td>
<td>An efficient method to inversely design air-supply opening size for a commercial airplane</td>
</tr>
<tr>
<td>Widdowson, Caroline</td>
<td>Vehicle interior air quality - (S)VOC emission from materials: regulation, standard methods and analytical implementation</td>
</tr>
</tbody>
</table>

Smart and mobile technologies

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botzler, Sebastian, et al.</td>
<td>Investigating peoples’ preferences of automated indoor climate control facilities</td>
<td>825</td>
</tr>
<tr>
<td>Fan, Jintu</td>
<td>Impact of clothing on thermal comfort and energy saving in indoor environment</td>
<td>828</td>
</tr>
<tr>
<td>Habibi, Shahryar</td>
<td>Development of smart micro-grid energy efficiency technologies on workplace level</td>
<td>836</td>
</tr>
<tr>
<td>Jeberien, Alexandra , et al.</td>
<td>Wireless climate monitoring devices for museums</td>
<td>844</td>
</tr>
<tr>
<td>Karmann, Caroline, et al.</td>
<td>Online map of buildings using radiant technologies</td>
<td>852</td>
</tr>
<tr>
<td>Kazanavicius, Egidijus, et al.</td>
<td>Indoor air environment management system</td>
<td>860</td>
</tr>
<tr>
<td>Storgaard, Kresten, et al.</td>
<td>The Indoor as a scene for biological threats. involving users in making smart devices effective</td>
<td>865</td>
</tr>
<tr>
<td>Wiesmüller, Gerhard, et al.</td>
<td>Risk assessment of exposure to Electromagnetic Fields (EMF) from smart and mobile technologies</td>
<td>874</td>
</tr>
<tr>
<td>Pillarisseti, Ajay , et al.</td>
<td>PATS+ field testing: Characterizing sensors and their responses to air pollutants and integrating stove usage datastreams for household energy assessments</td>
<td>876</td>
</tr>
</tbody>
</table>

Wireless sensors and smartphone monitoring of indoor environment

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bräuner, Elvira, et al.</td>
<td>False positives in detection of biological-warfare agents</td>
<td>879</td>
</tr>
<tr>
<td>Huang, Gongsheng, et al.</td>
<td>Optimal location of wireless temperature sensor nodes in large-scale rooms</td>
<td>895</td>
</tr>
<tr>
<td>Loo, Sin Ming, et al.</td>
<td>A low-cost wireless portable particulate matter monitoring system</td>
<td>903</td>
</tr>
<tr>
<td>Qiao, Lifeng, et al.</td>
<td>Development of a wireless sensing system for monitoring indoor environment</td>
<td>911</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Zhou, Hao, et al.</td>
<td>A big data approach for indoor environmental quality assessment, awareness and improvement</td>
<td></td>
</tr>
<tr>
<td>Dannemiller, Karen, et al.</td>
<td>Gene-sequencing and bio-informatics for indoor microbiology studies</td>
<td></td>
</tr>
<tr>
<td>Scott, James, et al.</td>
<td>Improving the quantification of fungal population analysis by next-generation DNA sequencing</td>
<td></td>
</tr>
<tr>
<td>Tovey, Euan, et al.</td>
<td>Improved biodeterioration resistance tests for building materials</td>
<td></td>
</tr>
<tr>
<td>Scott, James, et al.</td>
<td>New bio-monitoring technologies for indoor applications</td>
<td></td>
</tr>
<tr>
<td>Luek, Jiaping, et al.</td>
<td>New methods for measuring the time course of personal exposure to biological particles including aeroallergens</td>
<td></td>
</tr>
<tr>
<td>Liu, Jiaping, et al.</td>
<td>Plenary talks</td>
<td></td>
</tr>
<tr>
<td>Nielsen, Peter, et al.</td>
<td>Generalized design principle and method for thermal insulation system in building envelope</td>
<td></td>
</tr>
<tr>
<td>Nielsen, Peter, et al.</td>
<td>Computational fluid dynamics and ventilation airflow</td>
<td></td>
</tr>
</tbody>
</table>

914 | 917 | 920 | 926 | 932 | 948