Co-solvent selection for supercritical fluid extraction of astaxanthin and other carotenoids from Penaeus monodon waste

*Department of Food Technology, Universiti Putra Malaysia, Serdang, Malaysia
**Department of Landscape Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract

In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and b-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of a-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthin was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanolic extract produced the highest carotenoid yield (38.02 ± 0.8 µg/g dry weight (DW)) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 µg/g DW) and the free astaxanthin content (12.25 ± 0.9 µg/g DW) in the extract. Lutein and b-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies. © 2014 by Japan Oil Chemists’ Society.

Author keywords

Astaxanthin, Carotenoids, HPLC, Penaeus monodon, SFE

Indexed keywords

Engineering controlled terms:
- Astaxanthin
- Carotenoids
- HPLC
- Penaeus monodon
- SFE

Engineering main heading:
- Organic solvents

EMTREE drug terms:
- alcohol
- aspartic acid
- beta carotene
- canthaxanthin
- solid waste
- solvent
- xanthophyll

EMTREE medical terms:
- animal
- chemistry
- isolation and purification
- Penaeus
- procedures
- solid waste
- supercritical fluid chromatography

MESH:
- Animales
- Beta Carotene
- Canthaxanthin
- Chromatography, Supercritical Fluids
- Ethanol
- Lutein
- Penaeus
- Solvents
- Xanthophyll

Chemicals and CAS Registry Numbers:
- Alcohol, 64-17-5; astaxanthin, 472-61-7; beta carotene, 7235-40-7; canthaxanthin, 514-78-3; xanthophyll, 127-40-2, 52642-48-5; astaxanthin; beta Carotene; Canthaxanthin; Ethanol; Lutein; Solid Waste; Solvents; Xanthophyll

ISSN: 13458097
DOI: 10.5600/jos.ees33184
PubMed ID: 25007745
Document Type: Article
Publisher: Japan Oil Chemists Society

Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources

Next generation nutraceutical from shrimp waste: The convergence of applications with extraction methods

Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis

Optimization of supercritical fluid extraction of astaxanthin from Penaeus monodon waste using ethanol-modified carbon dioxide

Effect of background colour on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked attractiveness