Scopus

Search

Sources

Alerts

Lists

Help 🗸

SciVal >

Register > Lo

Document details

Co-solvent selection for supercritical fluid extraction of astaxanthin and other carotenoids from Penaeus monodon waste (Article)

Radzali, S.A.ª, Baharin, B.S.ª 🖾, Othman, R.b, Markom, M.c, Rahman, R.A.ª 🙏

^aDepartment of Food Technology, Universiti Putra Malaysia, Serdang, Malaysia

bInternational Institute for Halal Research and Training (INHART), Herbarium Unit, Department of Landscape Architecture, Kulliyyah of Architecture and Environment Design, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Department of Chemical and Process Engineering and Built Environment, National University of Malaysia, Bangi, Malaysia

Abstract View references (49)

In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β -carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α -tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 \pm 0.8 μ g/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 \pm 0.1 μ g/g DW) and the free astaxanthin content (12.25 \pm 0.9 μ g/g DW) in the extract. Lutein and β -carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies. © 2014 by Japan Oil Chemists' Society.

Author keywords

Chemicals and CAS Registry Numbers:

alcohol, 64-17-5; astaxanthin, 472-61-7; beta carotene, 7235-40-7; canthaxanthin, 514-78-3; xanthophyll, 127-40-2, 52842-48-5; astaxanthine; beta Carotene; Canthaxanthin; Ethanol; Lutein; Solid Waste; Solvents; Xanthophylls

ISSN: 13458957 Source Type: Journal Original language: English DOI: 10.5650/jos.ess13184 PubMed ID: 25007745 Document Type: Article Publisher: Japan Oil Chemists Society

Cited by 8 documents

Next generation nutraceutical from shrimp waste: The convergence of applications with extraction methods

Prameela, K. , Venkatesh, K. , Immandi, S.B. (2017) Food Chemistry

Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis

Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources

VI II V D II V

Xu, D.-P., Li, Y., Meng, X. (2017) International Journal of Molecular Sciences

View all 8 citing documents

Inform me when this document is cited in Scopus:

Set citation alert >

Set citation feed >

Related documents

Optimisation of supercritical fluid extraction of astaxanthin from Penaeus monodon waste using ethanol-modified carbon dioxide

Radzali, S.A. , Masturah, M. , Baharin, B.S.

(2016) Journal of Engineering Science and Technology

Extraction of ω -3 fatty acids and astaxanthin from Brazilian redspotted shrimp waste using supercritical CO 2 + ethanol mixtures

Sánchez-Camargo, A.P., Meireles, M.Â.A., Ferreira, A.L.K. (2012) Journal of Supercritical Fluids

Effect of background colour on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked