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Abstract: We consider linear and nonlinear stochastic models of transmission Rhesus factor from
parents to their offspring and show that in long run behavior the frequency of Rhesus factor be the
same.
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INTRODUCTION

Blood groups are the distinguishing of blood by their antigenic properties. These properties are determined
by the substances found on the surface of the red blood cells. There are approximately 200 blood group
substances identified and categorized into 19 distinct systems. The most common system is the ABO system.
The human ABO blood group was discovered by Karl Landsteiner in 1900[4], and its mode of inheritance as
multiple alleles at a single generic locus was established by Felix Bernstein[1] a quarter century later. 

The ABO blood group antigens appear to have been important throughout our evolution because the
frequencies of different ABO blood types vary among different populations, suggesting that a particular blood
type conferred a selection advantage.

The Rhesus system is the second most significant blood group system in human blood transfusion.
Individuals either have, or do not have, the Rhesus factor (or Rh D antigen) on the surface of their red blood
cells. This is usually indicated by Rh+  (does have the RhD antigen) or Rh-  (does not have the antigen) suffix
to the ABO blood type. 

A child inherits two rhesus genes, one from each parent, where gene D corresponds to positive rhesus
factor and gene d corresponds to negative rhesus factor.

Table 1: Offspring’s Rhesus genes
Offspring’s Rhesus genes Rhesus gene  inherited from the mother

--------------------------------------------------------------------------
D d

Rhesus gene  inherited from  the father      D (D,D) (D, d)
     d ( D, d) (d, d) 

Offspring is rhesus negative if they have inherited a d gene from each parent (d,d) and offspring is rhesus
positive if they inherited a D gene from both parents. If offspring have inherited a rhesus positive gene D and
a rhesus negative gene d , they are most likely to be rhesus positive as the D gene is more dominant as
compared to the d gene. Hence it is possible to have a rhesus negative child and a rhesus positive father.

Table 2: Offspring’s Rhesus factor
Offspring’s Rhesus factor Mother’s Rhesus factor

---------------------------------------------------------------------------
Rh+ Rh-

Father’s Rhesus factor Rh+ Rh+ or Rh- Rh+ or Rh-   
Rh- Rh+ or Rh- Rh-

      It is well known that blood groups and rhesus of parents do not determine unambiguously their
offspring’s  blood group and rhesus (see Table 2). The transmission of blood groups and its rhesus from
parents to their offspring is a random events. To study these transmissions we consider two type of stochastic
modeling:
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(i) Markov chains;
(ii) Quadratic stochastic operators.

The theory of Markov chains is well known. It is naturally the model that described by Markov chain 
call linear model

In the next part we briefly introduce a nonlinear model that is described by nonlinear transformation,
namely, a quadratic stochastic operator.

In this paper we consider models of transmission Rhesus factor. To study models of transmission of blood
type is the subject of the second part.
       
1. Quadratic Stochastic Operators:

Quadratic stochastic operator was first introduced in [1].Such operator frequently arises in many models
of mathematical genetics[1-6].Consider a biological population, that is a community of organisms closed with
respect to reproduction. Assume that each individual in this population belongs to precisely one species 1,…,
m . Below we consider the scale of blood rhesus with m = 2. The scale of species is such that the species of
the parents  i  and  j  unambiguously determines the probability of every species k for  the first  generation 
of  direct  descendants.  Denote  this probability, that is to be called the heredity 

coefficient, by       . It is then obvious that            0  and                . Assume that the population is ,ij kp ,ij kp  ,
1

1
m

ij k
k

p



so large that frequency fluctuations can be neglected. Then the state of the population can be described by the
m-tuple  (x1,x2,…,xm) of species probabilities, that is  xk is the fraction of the species k in the total population.
In the case of  panmixia (random interbreeding) the parent pairs i and j arise for a fixed state x=(x1,x2,…,xm)
with probability xixj. Hence the total probability of the species k in the first generation of direct descendants
is defined by

                      , k=1,…,m   (1),
, 1

m

k ij k i j
i j

x p x x


  

Let                                                                                                be  the  (m-1) -
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dimensional canonical simplex in     . The transformation                       is called a quadratic stochastic
mR 1 1: m mV S S 

operator if

                              , k=1,…,m   (2),
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where  a)            0 ; b)                  ; and c)                for arbitrary i,j,k=1,…,m.,ij kp  , ,ij k ji kp p ,
1

1
m

ij k
k

p



Note that the condition b)                  is not overloaded, since otherwise one can determine new  heredity , ,ij k ji kp p

coefficients                            with preserving  the operator V
, ,

, 2
ij k ji k
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                                 , k=1,…,m   (3),
, 1

: ( )
m

k ij k i j
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V Vx q x x


 

Thus the transformation (2) or (3), which describes a model of heredity is a quadratic  stochastic operator. 

A model of heredity is uniquely determined by heredity coefficients        or                         for,ij kp , ,
, 2

ij k ji k
ij k

p p
q



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i,j,k=1,…,m.
Assume {Vk(x): k=0,1,2,…} is  the trajectory of  the initial  point x 0         , where Vk+1(x) = V(Vk(x)) 1mS 

for  all   k=0,1,2,… with V0(x)=x.
To investigate limit behavior of trajectories and fixed points of quadratic stochastic operator V (2) play

important role in many applied problems.
A fixed point of a quadratic stochastic operator V is a point x = a where V(a) = a.

A quadratic stochastic operator V is called regular if for each initial point               the limit
1mx S 

 lim ( )n

n
V x



exists.
Note that the limit point be a fixed point of a quadratic stochastic operator V.

Thus the fixed points of a quadratic stochastic operator describe limit or long run behavior  the trajectories 
of any initial  points.

A quadratic stochastic operator describes the transmission of the same scales from pair of parents to their
offspring.

2. Rhesus Factor Transmission:
Firstly we consider linear model of transmission, namely, Markov chain. A Markov chain describes

transmission of some scale from one of parents to their offspring of the same gender. Note that only for such
Markov chains one can study their limiting distribution or long run behavior. Below we consider two Markov
chains: first Markov chain describes a transmission of rhesus factor from fathers to their sons and second one
describes transmission of rhesus factor from mothers to their daughters. For collected data let NS(FX) be the 

number of sons of fathers FX ,that is fathers with rhesus factor  X and               be the number of sons with ( )Y
S XN F

rhesus factorY of fathers FX  where                    Then NS(FX)=                         ., { , }.X Y    ( ) ( )S X S XN F N F 

To describe the transmission of factor rhesus from fathers to their sons  we need to find the probabilities
PXY   that  from  a  father  with factor rhesus  X his son heredities factor rhesus Y, where X,Y Î {+,-}. It is 

naturally to put PXY =               .
( )

( )

Y
S X

S X

N F

N F

Then according collected data the transition probalities matrix of the first Markov chain has form

(Son)
                                 +      -

                 (Father)                              (4)( , )F S 



0.970 0.030

0.508 0.492

and the transition probalities matrix of the second  Markov chain, which describes the transmission of rhesus
factor from mother to her daughters,  has form

(Daughter)
                                   +        -

                  (Mother)                              (5)( , )M D 



0.969 0.031

0.510 0.490
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Both Markov chains are regular with limiting distribution

         0.944,           0.056   

for first Markov chain and with limiting distribution

         0.943,            0.057   

for second one.

3. Nonlinear Model of Rhesus Factor Transmission:
Now consider nonlinear model of transmission, namely quadratic stochastic operators. Let a set of species

be a set of factor rhesus {1, 2}, where 1 denote positive rhesus and 2 denote negative rhesus. To describe the
transmission of factor rhesus from parents to their offspring  we need to find the probability PXY,Z   that from
a father with factor rhesus  X and a mother with factor rhesus Y their  child receives factor rhesus Z, where
X,Y,Z Î {1,2}. Let  N(FX,MY ) be the number of offspring  of fathers FX and mothers MY ,that is fathers with 

factor  rhesus   X and mothers with factor rhesus Y and                     be the number of offspring with ( , )Z
X YN F M

factor rhesus  Z of  fathers  FX and mothers MY. Then the transmission probability  PXY,Z  is defined as 

PXY,Z =   (6)
( , )

( , )

Z
X Y

X Y

N F M

N F M

Let        =                  be the heredity coefficients for  i,j,k Î{1,2}. ,ij kq , ,

2
ij k ji kP P

For collected data according (6) we have following:

 
11,1 12,1 22,1

11,2 12,2 22,2

0.985, 0.652, 0.092

0.015, 0.348, 0.908

q q q

q q q

  

  

and corresponding  quadratic stochastic operator has form

   (7)

2 2
1 1 1 2 2

2 2
2 1 1 2 2

0.985 1.305 0.092

0.015 0.695 0.908

x x x x x

x x x x x

   

   

where x1 is the fraction of the population with positive rhesus factor and x2 is the fraction of the population
with negative rhesus factor.
The transformation (7) has single fixed point   

   (8)
* *
1 20.954, 0.046x x 

The Jacobian of the quadratic stochastic operator (6) at the fixed point has following form

 
1.939 1.253

(0.954,0.046)
0.061 0.746

J 

with eigen values                and           . The eigen vector corresponding to eigen value           is fixed 1 0.685  2 2  2 2 
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vector (8) and the eigen vector corresponding  to  eigen  value                  does not  belong  to  simplex 1 0.685 

   .1S
The fixed point (8) is stable and any trajectory of quadratic stochastic operator (7) converge to fixed point 

(8). Thus  the quadratic stochastic operator  (7) is a regular.

4. Discussion and Conclusion:
From our considerations follow that frequencies of Rhesus factor among men and women are the same,

that is there is no significant association between sex and Rhesus factor. Secondary, probability that a son
(daughter) of a father (respectively a mother) with negative Rhesus factor will inherit positive rhesus factor
is equal to 0.5. 

Now consider the received heredity coefficients:

  
11,1 12,1 22,1

11,2 12,2 22,2

0.985, 0.652, 0.092

0.015, 0.348, 0.908

q q q

q q q

  

  

One can see that  there are instances when the chart of Table 2 is not  accurate, since q22,1=0.092 means
that a child of parents with negative rhesus factor receives positive rhesus factors with probability 0.092. . In
the case of a mutation, the factor rhesus typing may not hold true in the question of parentage. 

Finally note since the data collected  at two regions of Malaysia, probably our results are valid  within
a national, regional, or ethnic group.

This research supported by Research Endowment Grant EDW B0801-59 of International Islamic University
Malaysia. 
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