Optimization of spray drying process conditions for recombinant stem bromelain

Salleh, H.M.\(^a\), Mel, M.\(^b\), Jamil, M.S.\(^a\), Amid, A.\(^b\), Bala, M.\(^c\)

\(^a\)Bioprocess and Molecular Engineering Research Unit, Department of Biotechnology Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia

\(^b\)International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia

\(^c\)Department of Biochemistry, Bayero University, P.M.B. 3011, Kano, Nigeria

Abstract

Bromelain is a plant protease with numerous therapeutic, industrial and analytical applications. Spray drying of enzyme often leads to loss of enzymatic activity arising from thermal denaturation. Hence, the design of a suitable drying process should provide a great level of active enzyme. The present study examined the effect of operating parameters of a laboratory spray dryer on powder characteristics, so as to optimise the production of recombinant bromelain expressed in E. coli BL 21-AI. The recombinant enzyme was spray dried from maltodextrin (10 % w/v), CaCl\(_2\) (0.2 % w/v) and sodium metabisulphite (2.5 % w/v) solutions using a laboratory-scale Buchi Mini Spray dryer B-290. The process parameters investigated were: drying air inlet temperature (100-120 °C), drying air volumetric flow rate - given as % of the maximum aspiration rate (80-100 %), feed volumetric flow rate- expressed as % of the maximum pump rate (10-15 %). On the other hand, the activity of bromelain (U/ml) served as the response of the design. Outlet temperature was maintained at 50 °C. All the studied process parameters had significantly affected the characteristics of the powdered bromelain, at a 95% confidence interval. The higher values of coefficient of determination (R\(^2\) = 99.95% and adjusted R\(^2\) = 99.84%) attained, showed that there is good compliance between the experimental and the theoretical values predicted by the model. Moreover, the graphical representations of the regression equation generated suggested that the examined independent variables interacted significantly. Thus, the corroboration of reality of the optimal conditions and the validity of the model had been ascertained. Consequently, under optimized process conditions, the study had produced powdered bromelain with greater quality in terms of moisture contents, residual activity and product recovery. © 2014 AENSI Publisher All rights reserved.

Author keywords

Aspirator setting, Factorial design, Inlet temperature, Pump setting, Recombinant bromelain

ISSN: 19950756

Source Type: Journal

Original language: English

Document Type: Article

Publisher: American-Eurasian Network for Scientific Information

References (24)
<table>
<thead>
<tr>
<th></th>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
<th>Journal/Book/Conference</th>
<th>Volume/Issue/Part</th>
<th>Pages</th>
<th>Cited</th>
<th>DOI</th>
<th>View at Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kelly, G.S.</td>
<td>Bromelain: A literature review and discussion of its therapeutic applications</td>
<td>1996</td>
<td>Alternative Medicine Review</td>
<td>1 (4)</td>
<td>243-257</td>
<td>84</td>
<td></td>
<td>[link]</td>
</tr>
<tr>
<td>4</td>
<td>Kristian, B., Henry, R.C., Mark, T.</td>
<td>Statistical modeling of spray drying at the lab scale</td>
<td>2002</td>
<td>Pharm. Sci. Tech</td>
<td>3 (1)</td>
<td>1-8</td>
<td></td>
<td></td>
<td>[link]</td>
</tr>
<tr>
<td>7</td>
<td>Dumoulin, E., Bimbenet, J.J.</td>
<td>Spray drying and quality changes</td>
<td>1998</td>
<td>The properties of water in foods</td>
<td></td>
<td>209-232</td>
<td>4</td>
<td>[link]</td>
<td>[link]</td>
</tr>
<tr>
<td>8</td>
<td>Gupta, P., Khan, R.H., Saleemuddin, M.</td>
<td>Binding of antibromelain monomeric Fab' improves the stability of stem bromelain against inactivation</td>
<td>2003</td>
<td>Biochimica et Biophysica Acta - Proteins and Proteomics</td>
<td>1646 (1-2)</td>
<td>131-135</td>
<td>14</td>
<td>10.1016/S1570-9639(02)00554-X</td>
<td>[link]</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
<td>Journal</td>
<td>Volume (Issue), Pages</td>
<td>Cited Times</td>
<td>Publisher Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Devakate, R.V., Patil, V.V., Waje, S.S., Thorat, B.N.</td>
<td>Purification and drying of bromelain</td>
<td>2009</td>
<td>Separation and Purification Technology</td>
<td>64 (3), pp. 259-264</td>
<td>39 times</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Amid, A., Ismail, N.A., Yusof, F., Salleh, H.M.</td>
<td>Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus</td>
<td>2011</td>
<td>Process Biochemistry</td>
<td>46 (12), pp. 2232-2239</td>
<td>27 times</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Muntari, B., Amid, A., Mel, M., Jami, M.S., Salleh, H.M.</td>
<td>Recombinant bromelain production in Escherichia coli: Process optimization in shake flask culture by response surface methodology</td>
<td>2012</td>
<td>AMB Express</td>
<td>2 (1), pp. 1-9</td>
<td>16 times</td>
<td>View at Publisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Muntari, B., Mel, M., Jami, M.S., Amid, A., Salleh, H.M.</td>
<td>Kinetic studies on recombinant stem bromelain</td>
<td>2013</td>
<td>Advances in Enzyme Research</td>
<td>1, p. 3</td>
<td></td>
<td>(in press)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17 Maury, M., Murphy, K., Kumar, S., Shi, L., Lee, G.
Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer
View at Publisher

18 Muralidhar, R.V., Chirumamila, R.R., Marchant, R., Nigam, P.
A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources
doi: 10.1016/S1369-703X(01)00117-6
View at Publisher

19 Tajber, L., Corrigan, O.I., Healy, A.M.
Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties
View at Publisher

20 Maltesen, M.J., Bjerregaard, S., Hovgaard, L., Havelund, S., van de Weert, M.
Quality by design - Spray drying of insulin intended for inhalation
View at Publisher

Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties
View at Publisher

22 Ståhl, K., Claesson, M., Liliehorn, P., Lindén, H., Bäckström, K.
The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation
doi: 10.1016/S0378-5173(01)00945-0
View at Publisher

23 Tonon, R.V., Brabet, C., Hubinger, M.D.
Influence of process conditions on the physicochemical properties of açai (Euterpe oleracea Mart.) powder produced by spray drying
doi: 10.1016/j.jfoodeng.2008.02.029
View at Publisher

Salleh, H. M.; Bioprocess and Molecular Engineering Research Unit, Department of Biotechnology Engineering, International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, P.O. Box 10, Malaysia; email: hamzah@iium.edu.my

© Copyright 2014 Elsevier B.V., All rights reserved.