Development and improvement of anti-gout property from aqueous-methanol extract of Morinda elliptica using central composite design


Bioprocess and Molecular Engineering Research Unit (BPIMERU), Department of Biotechnology Engineering, International Islamic University Malaysia (IIUM), P.O. BOX 10, 50722 Kuala Lumpur, Malaysia

International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Malaysia

Abstract

Xanthine oxidase (XO) is a key enzyme in hyperuricemia, catalyzing the oxidation of hypoxanthine to xanthine and then to uric acid. Excess serum accumulated with uric acid leads to a type of arthritis known as gout. In this study, development of process conditions for XO inhibitory activity from the leaves of Morinda elliptica was performed by using 70% methanol. Optimization of process parameters such as extraction temperature (°C), extraction time (h), agitation speed (rpm) and ratio of sample to solvent (g/ml) at five levels was carried out using central composite design (CCD) for the improvement of activity to treat gout. The analysis of variance demonstrated that the model F-value of 18.31 showed the significance of the model with R² of 97.71%. The analysis revealed that the percentage of XO inhibitory activity was improved at 32 °C, 36 h, 125 rpm and 1 g/15 ml of solvent. The optimized conditions were verified and the percentage of XO inhibitory activity obtained was 88.93%. The results are encouraging to formulate food, nutraceutical or pharmaceutical products incorporating natural xanthine oxidase inhibitor (XOI), an alternative to responsive synthetic XOI. © 2014 AENS! Publisher All rights reserved.

Author keywords

Central composite design, Gout, Morinda elliptica, Optimization, Xanthine oxidase inhibitor

ISSN: 1996-0756
Source Type: Journal
Original language: English

Document Type: Article
Publisher: American-Eurasian Network for Scientific Information

Related documents

Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout


Synthetic xanthine oxidase inhibition and...