Effect of peak current on material removal rate for electrical discharge machining of non-conductive Al$_2$O$_3$ ceramic

Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, PO Box 10, 50728 Kuala Lumpur, Malaysia

Abstract

Electrical discharge machining (EDM) is a non-conventional machining process where materials are removed by the thermal energy exerted from series of electrical sparks. This process is applied for machining of non-conductive alumina (Al$_2$O$_3$). The workplace is covered with the adhesive copper foil to initiate the initial spark between the workplace and the tool electrode. A pyrolytic carbon (PyC) layer is generated on workplace surface by dissociating kerocene dielectric after the machining of initial copper assisting electrode (AE) layer. In this study, experiments were performed by varying the peak current and keeping other parameters constant in order to investigate the effect of peak current on material removal rate (MRR) in EDM of Al$_2$O$_3$. The results showed that the lowest and the highest values of peak current were 1.1 A and 1.3 A, respectively. Material cannot be removed due to insufficient PyC layer generation for any values of peak current less than 1.1 A or more than 1.3 A. From the results, it is also observed that the MRR is increased when higher peak current values are used. MRR was found to be 0.052 mm3/min at peak current 1.1 A and it was found to be 0.132 mm3/min at peak current 1.3 A. © (2014) Trans Tech Publications, Switzerland.

Author keywords

Assisting electrode, Conductive layer, Electrical discharge machining, Material removal rate, Non-conductive ceramic, Peak current

Indexed keywords

Assisting electrode, Conductive layer, Electrical discharge machining, Material removal rate, Non-conductive ceramic, Peak current

Engineering controlled terms:

Alumina, Aluminum, Ceramic materials, Copper, Electric sparks, Industrial engineering

Engineering main heading:

Electrical discharge machining

ISSN: 10226680
ISBN: 978-303785936-0
Source Type: Book series
Original language: English

DOI: 10.4028/www.scientific.net/AMR.845.730
Document Type: Conference Paper

Cited by 3 documents

Micromachining

Investigation of the machinability of non-conductive ZrO$_2$ with different tool electrodes in EDM

View all 3 citing documents

Related documents

Investigation of material removal characteristics in EDM of nonconductive ZrO$_2$ ceramic

View all 3 related documents