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ABSTRACT 
Cryptographic hash functions take an unfixed size of input and 
produce a fixed size of an output. A hash function usually has 
two main components: a compression function and mode of 
operation. Sponge construction is one of the main operations of 
modes of used in modern cryptographic hash function. In this 
paper, we present multicollisions attack in sponge construction. 
In 2004, Joux [3] presented multicollision attack in iterated 
hash function. Our attack is similar to Joux attack but 
specifically for sponge construction1. We show that finding 
multicollisions in sponge construction of messages that hash to 
the same value, is not harder finding ordinary collisions. Then, 
we use this attack as a tool to prove that concatenating more 
than one hash function in order to increase the security level 
does not yield to more secure construction.   

Categories and Subject Descriptors 
K.6.5 [MANAGEMENT OF COMPUTING AND 
INFORMATION SYSTEMS]: Security and Protection – 
Authentication, Insurance.  

General Terms 
Security 

Keywords:  Multicollisions - Sponge - Concatenation 

1. INTRODUCTION 
Cryptographic hash functions take an unfixed size of input and 
produce a fixed size of an output. A hash function usually has 
two main components: a compression function and mode of 
operation. The mode of operation is the design of the hash 
function that iterates the basic compression function several 
times. But good hash function should behave like a random 
oracle [1].Therein, a random oracle maps a variable input 
message to infinite uniformly and independent distributed 
output message. It is completely random, for each possible 

input x, there is a completely random value h(x). In real life, a                         
true random oracle doesn’t exist, but an ideal designed hash 
function should inherit the security criteria of this theoretical 
random oracle construction, because, it is unreachable goal for 
an iterated hash functions to behave exactly and become strong 
as random oracles. 

Practically, the main security requirement for hash functions is 
collision resistance. Collision resistance is finding two different 
messages M and M’ that leads to the same hash digest. 
According to the birthday paradox theory, in a group of 23 
randomly chosen people, two people will share a birthday with 
probability at least ½. More precisely, suppose h denotes the 
domain set for all human beings, and for all x, h(x) denotes the 
birthday of person x. Then, the range of h consists of 366 days 
(if we include February 29). So that, finding two people with 
the same birthday is the same thing as finding a collision for 
this particular hash function [2]. For this reason, a hash 
function for which collision cannot be efficiently solved is 
often said to be collision resistant [2]. Accordingly, if h is a  

hash function that output bit values, then among the hash values 
of 2n/2 different messages, there exists a collision of birthday 
paradox based attack. The birthday attack imposes a lower 
bound on the sizes of secure hash digest. Yet, a 64-bit message 
hash digest considered unsecure. A collision can be found with 
probability ½ with just over 232 random hashes. As a result, the 
minimum acceptable message hash digest today is 160 bits or 
larger due to the birthday attack. The complexity of the 
birthday attack is Ө(2n/2). Also, the birthday attack is applicable 
to all compression functions in iterated hash functions. 

2. PRELIMINARIES 
In this section, we give brief introductions about Joux attack 
and sponge construction. These two main concepts are the basis 
for the attack presented in this paper.  

2.1 Joux Attack 
Recently, Joux [3] showed an effective multicollisions attack in 
iterated hash function and it’s faster than birthday attack. But 
before describing Joux attack which is the basis for the attacks 
used in this paper, the hashing process of the iterated hash 
functions; i.e. Merkle-Damgård; will be described as follows: 

 Break the input x into blocks x1, x2…..xt. 
 Pad the last block xt with 0-bits if necessary to obtain the 

multiple length of r. 
 Create the length block xt+1 with bit length r to hold the right 

justified binary representation of overall bit-length of x (MD 
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strengthen). 
 Inputting x1, x2…..xt to the compression function (iterated 

processing) to produce an intermediate value of Hi.  
 Hi serves as feedback value to f and is processed with xi+1 in the 

next iteration. This implies the need of an initial value (IV) H0 
for the first iteration that is often provided pre-defined with bit- 
length r. 

 Output H(xt)=Ht. [7] 

The most distinctive and special part of Merkle-Damgård 
construction (mode of operation) is that the problem of 
designing a collision resistant hash function reduced to 
designing a collision resistant compression function. This 
means, if the compression function is collision resistant, then, 
the hash function is collision resistant. So, the properties of the 
compression function will be transformed to the hash function. 
Joux found that finding multicollisions, i.e. r-tuples of 
messages that all hash to the same values, is not harder than 
finding ordinary collisions, i.e. pairs of messages, even for 
extremely large values of r. Then, he uses his multicollisions as 
a tool to prove that concatenating the results of several 
independent iterated hash functions, i.e. Merkle-Damgård, in 
order to build a larger one, does not yield to a secure 
construction [3]. To describe such attack, the padding process is 
ignored as long as the messages collisions have the same 
length. This means, collision with padding will yield to the 
collision without padding. An adversary can access a collision 
finding machine C, that given as input as a chaining value h 
outputs two different blocks X and X’ such that f(h,X) = f(h,X’). 
The collision finding machine C should work for all chaining 
values of the compression function. To illustrate the basic idea, 
he showed how is the 4-collisions can be obtained with two 
calls to C. Starting from the initial value IV, an adversary may 
call C to find the first two different blocks X0 and X0’ that yield 
to a collision where f(h,X0) = f(h,X0’). Again, the same process 
will run again but with different blocks X1 and X1’ such that 
f(h,X1) = f(h,X1’). Putting the 2 processes altogether, we obtain 
the following 4-collisions: 

f( f(IV,X0), X1) = f( f(IV,X0), X1’) = f( f(IV,X0’), X1) = 
f( f(IV,X0

’), X1’). 

Now, this idea can be extended to find 2t collisions in h(x) and 
can concluded as follows: 

 Let h0 = IV 
 For i from 1 to t do: 

 Call C and find Xi and Xi’ where f(hi-1,Xi) = f(hi-1,Xi’) 
 Let hi = f(hi-1,Xi) 

 Pad and output the 2t messages of the form (x1,……., xt, 
Padding) where xi is one of the two blocks Xi and Xi’ [3]. 

As Figure 1 shows that all the intermediate hash values are 
equal since all of the 2t hashing process go through h0, h1,….., 
ht [3].  

 

Figure1. Schematic representation of multicollision 
construction [3] 

Joux used multicollision attack as a tool to produce a collision 
attack in concatenated hash functions F and G. He claimed that 
concatenating two different iterated hash functions 
(F(X)IIG(X)) or slightly different ones is not really secure than 
F or G itself. This result is applied to collision resistance, 
preimage and second preimage resistance. For a collision 
resistance, if the security level of F is 2nf/2 and for G is 2ng/2, 
then the complexity of the best attack for FIIG would be 
2(nf+ng)/2. But Joux had much better attack which find collisions 
on FIIG with complexity ng2

nf/2+2ng/2 if nf ≤ ng. To describe 
such attack, first an adversary may use the multicollisions 
attack showed in Figure 1 with t equal to ng/2 rounded up, to 
construct a 2t collision on F and this costs about t2nf/2 operations 
in the compression function f. This yields to 2t different 
messages of hash values on the F side. Then, perform a direct 
application of the birthday paradox on the obtained set among 
the ng-bit hashes of these 2t messages by G. This attack does 
not require of G to be an iterative hash function, any hash 
function will do. Also, for preimage and second preimage 
resistance, assume that an adversary is hashing messages for a 
relatively small set of 2m messages. Clearly, the best generic 
attack is to find a preimage in that case which costs 2m steps. 
And assuming that the output of each of the two concatenated 
hash functions is larger than m bit and on this set of messages, 
i.e. F, hash a shortcut attack [3]. Then, uses this attack to 
recover a candidate preimage or second preimage. So, this 
indicates the preimage or second preimage for the other 
function. This attack shows the same result as the collision 
attack which concatenating two different iterated hash functions 
(F(X)IIG(X)) or slightly different ones is not really secure than 
F or G itself. More particularly, this attack much better attack 
than collision resistance where its complexity is 
ng2

nf/2+2ng/2+2nf if nf ≥ ng. To describe such attack, first an 
adversary may use the multicollisions attack showed in Figure 
1 with t equal to ng rounded up, to construct a 2t collision on F 
and this costs about t2nf/2 operations in the compression 
function f. Then, search for an additional block (including the 
padding of the message) that maps the last chaining value to the 
target value of F. Lastly, the adversary will obtain 2t different 
messages with the expected hash value on the F side. As 
before, preimage and second preimage attack does not require 
of G to be an iterative hash function, any hash function will do. 
Indeed, Joux attack had a direct impact on Merkle-Damgård 
construction and made the cryptography community to look 
forward for a new trusted construction. Consequently, Stefan 
lucks [4] introduced the wide pipe hash construction as an 
intermediate version of Merkle-Damgård to improve the 
structural weaknesses of Merkle-Damgård design. Figure 2 
shows the wide pipe hash construction. The process is similar 
to Merkle-Damgård algorithm steps except of having a larger 
internal state size, which means the final hash digest is smaller 
than the internal state size of bit length.  

 

1This is not the case for Keccak SHA-3 winner candidate, where 
Keccak is a wide pipe sponge construction which has the 
capacity c = 2n, and the hash digest is n, which means, there is a 
truncation process in the last function f, hence the attack in this 
paper is not applicable for Keccak hash function.   
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Figure 2. The wide pipe hash construction [4] 

Also, the final compression function compresses the internal 
state length (for ex, 2n- bit) to output a hash digest of n-bit. 
This simply can be achieved by discarding the last half of 2n-
bit output. Also, Mridul Nandi and Souradyauti Paul [5] 
proposed the fast wide pipe construction. It is twice faster than 
the wide pipe construction. Figure 3 shows the fast wide pipe 
construction. As the Figure shows, the input (IVs) for each 
compression function is divided into halves.  

 

Figure 3. The fast wide pipe hash construction [5] 

The first half is inputted in the compression function and the 
other half is XORed with the output for the same compression 
function. The feed-forward process makes the overall design 
faster. Hence, faster process is obtained. The final output of the 
hash digest can be truncated to the desired digest length using 
the final compression function.  

2.2 The Sponge Construction 
Sponge construction is an iterative construction designed by 
Guido Bertoni, Joan Daemen, Micheal Peeter and Gilles Van 
Assche to replace Merkle-Damgård construction [6]. It is a 
construction that maps a variable length input “M” to a 
variable length output. Namely, by using a fixed-length 
transformation (or permutation) f that operates on a fixed 
number of b = r + c bits. Where b is the width, r is the bitrate, c 
is the capacity and variable output called Z of length n as 
Figure 4 shown. The sponge construction operates in three 
phases: 

 Initialization: the message “M” is padded by appending a ‘1’ 
bit followed by the minimal (possibly zero) number of ‘0’ bits 
to reach a length that is a multiple of r. 

 Absorbing phase: The r-bit message blocks are XORed with 
the first r bits of the state of the function F. After processing all 
the message blocks, the squeezing phase starts. 

 Squeezing phase: The first r bits of the state are returned as 
output blocks of the function F. lastly, the number of output 
blocks is chosen by the user [6]. 

 

Figure4. The sponge construction [6] 

3. CONSTRUCTING MULTICOLLISIONS 
In this section, we show that multicollisions attack on sponge 
construction can be done in an efficient way. But before 
describing the attack, let us remark that the padding process is 
neglected as long as the messages have the same length. More 
precisely, since the padding process occur in the last block of 
message “M”, then, all intermediate chaining values have 
identical lengths. Also, presenting the notion capacity which 
was introduced first in sponge construction et. al [6]. It was the 
first step towards separating the hash digest length from 
security level of hash functions. So that, it is clear that the 
smaller capacity c, the more vulnerable sponge construction 
become. Where the original Merkle-Damgård construction 
assumes that c=n, which expose it to Joux attack. A possible 
direction for Merkle-Damgård construction is to enlarge the 
internal state, i.e. 2n, and then truncates the final desired hash 
digest output with transformation function, i.e. n, as shown in 
the patched versions of Merkle-Damgård construction in the 
section 2.1. Clearly, the security level of a hash function is 
limited to the length of the hash digest of that hash function. 
Where, enlarging the internal state, i.e. 2n, then, truncating the 
final result to n, resists Joux attack of that hash function. More 
precisely, in sponge construction, the resistance of inner 
collision is limited with capacity c with complexity of the order 
2c/2. To describe the multicollision attack in sponge 
construction, we assume that the capacity c=n, where n is the 
size of the hash digest. And, we assume that we can access the 
finding collision machine C, where given as input h outputs two 
different blocks Z and Z’ such that f(h, Z) = f(h, Z’). This 
collision finding machine will use the generic birthday attack to 
find the collision. To illustrate the basic idea, we first show 
how 4-collisions can be obtained with two calls to C. Staring 
from the initial value IV, we use a first call to C to obtain two 
different blocks Z0 and Z0

’ that yield to collision f(h, Z0) = f(h, 
Z0

’). Let d0 denotes this common value and using a second call 
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to C, we will find two other blocks Z1 and Z1
’ such that f(h, Z1) 

= f(h, Z1
’) [3]. Putting these two steps together, we obtain the 

following 4-collisions: 

f(f(IV, Z0), Z1) = f(f(IV, Z0), Z1
’) = f(f(IV, Z0

’), Z1) = 
f(f(IV, Z0

’), Z1
’) 

In more details to describe the attack, we will perform the 
generic birthday attack 1 (BD1) for messages M1 and M1

’ 

(assuming W1=0), then input them to f along with h0. The 
output of finding collision machine C are Z1 and Z1

’ where f(h, 
Z1) = f(h, Z1

’) = d0 (collision of birthday attack 1). For the next 
iteration of f, we will adjust the value of Z1 and Z1

’ to become 0. 
That’s will output W2 and h1 which are the inputs for the next 
iteration along with the generic birthday attack 2 (BD2) for 
messages M2 and M2

’. The output of finding collision machine 
C are Z2 and Z2

’ where f(h, Z2) = f(h, Z2
’) = d1 (collision of 

birthday attack 2). Figure 5 shows the basic idea of the 
collision.  

 

 
Figure 5. Multicollisions in sponge construction 

This basic idea can be extended to much larger collisions by 
using more calls to machine C. More precisely, using t calls, we 
can build 2t in H [3]. The attack work as follows: 

 Let W1=0 XORed with M1 and M1
’. 

 Let h0 = IV.  
 For i from 1 to t do: 
1. Call C and find Zi, Zi’ and di-1 where f(hi-1, Mi) =Zi  and  f(hi-1, 

Mi’) =Zi’.  
2. And, di-1 = f(hi-1, Mi) = f(hi-1, Mi’)=Zi = Zi

’. 
3. Let Zi, Zi

’ = 0 and call C to produce hi = f(di-1,Zi/Zi
’). 

4. Let Wi  XORed with Mi/Mi
’ then go to step 1, we repeat this 

process until we obtain the final result ht.  
 Pad and output the 2t messages of the form (m1,……., mt, 

Padding) where mi is one of the two blocks Mi and Mi’. 

Figure 6 shows a schematic representation of multicollisions on 
sponge construction which generalize the idea of the attack. 
The collision d0 is obtained every other iteration (or 
permutation). For example, we need 4 iterations (or 
permutations) of f in order to obtain 2-collisions. This yields to 
have 4 different pairs of combinations, i.e. M1IIZ1, M1IIZ1

’, 
M1

’IIZ1 and M1
’IIZ1

’. So that, this particular attack costs 2*2n/2 
with complexity Ө (2n/2 +  ).  

 

 
Figure 6. Schematic representation of multicollisions on 

sponge construction 

Generalizing the attack, we obtain a cost with ( )*2n/2 with 

complexity Ө (( )*2n/2 +  ).   

4. ON THE SECURITY OF THE 
CONCATENATED HASH FUNCTIONS 

Joux proved that concatenating two hash functions (at least one 
of them has MD construction), i.e. FIIG, is not really secure 
than F or G itself. This result is applicable to collision 
resistance, preimage resistance and second preimage resistance. 
In this section, we prove that concatenating two hash functions, 
i.e. FIIG,  where at least one of them has sponge construction is 
not really secure than F or G itself. We apply this result to 
collision resistance, preimage resistance and second preimage 
resistance.  

4.1 Collision resistance 
With respect to collision resistance, the security level of any 
hash function is 2n/2. Then, if the security level of F is 2nf/2 and 
for G is 2ng/2, then the complexity of the best attack for FIIG 
would be 2(nf+ng)/2. But there exists much better attack which 
find collisions for FIIG with complexity ng2

nf/2+2ng/2 if nf ≤ ng. 
To describe such attack, we use the multicollision algorithm 
explained in section 3 as a tool with t equal to ng/2 rounded up, 
to construct a 2t collision on F side and this costs about t2nf/2 
operations in the compression function f. This yields to 2t 
different messages of hash values on the F side. Then, perform 
a direct application of the birthday paradox on the obtained set 
among the ng-bit hashes of these 2t messages by G. This attack 
does not require of G to be an iterative hash function, any hash 
function will do (but, one of them require having sponge 
construction). Thus, concatenating two independent hash 
functions does not improve the collision resistance [3].  

4.2 Preimage and second preimage 
resistance 
With respect to preimage and second preimage resistance, the 
security level of any hash function is 2n. Then, if the security 
level of F is 2nf and for G is 2ng, then the complexity of the best 
attack for FIIG would be 2(nf+ng). As with collision resistance, 
there exists much better attack which find collisions for FIIG 
with complexity ng2

nf/2+2ng/2+2nf if nf ≥ ng. To describe such 
attack, we use the multicollision algorithm explained in section 
3 as a tool of Figure 1 with t equal to ng rounded up, to 
construct a 2t collision on F and this costs about t2nf/2 operations 
in the compression function f. Then, search for an additional 
block (including the padding of the message) that maps the last 
chaining value to the target value of F. Lastly, the adversary 
will obtain 2t different messages with the expected hash value 
on the F side. Once again, preimage and second preimage 
attack does not require of G to be an iterative hash function, 
any hash function will do [3] (but, one of them require having 
sponge construction). Thus, concatenating two independent 
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hash functions does not improve the preimage and second 
preimage resistance.  

5. EXTENSIONS OF MULTICOLLISION 
ATTACK 

Multicollisions attack presented in section 3 can be extended to 
three or more concatenated hash functions. To illustrate the 
idea, we assume K is a third hash function with security level 
2nk, then, we use the attack in section 3 to build a 2t collision on 
FIIG. This yield to collision on K based on Joux observation. 
When nf = ng = nk = n, the expression of the complexity is 
simplified to n2. 2n/2. In general, a simultaneous collision on s 
different n-bit hash functions can be found with complexity ns-

1.2n/2. This means, the security level of such a construction 
stays within the security of a single hash function. Also, if we 
build a hash function by concatenating G(F(X)IIX) or 
(G(X)IIF(X))). This is more complicated than the GIIF 
construction. But, the same attack can be applied, where a 2t is 
collisions is found on F(X), which fixes the F(X) in the first half 
of the big hash function, also the copy of F(X) in the call to G 
[3], which yields to collision on the part of G. The preimage 
attack can be adapted to two different concatenated examples 
presented here of the concatenated hash functions. 

6. CONCLUSION 
In this paper, we have showed that multicollisions attack on 
sponge construction is not really harder than ordinary collision. 
Also, this attack is used to prove that concatenating two 
separate independent hash functions is not secure than using 
one of them by itself. This result is applied to collision 
resistance, preimage resistance and second preimage resistance. 
Modern hash functions designers that use sponge construction 
should consider our attack by enlarging the capacity c at least 
double the size of the hash digest to obtain excellent resistance.   
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