
Joux multicollisions attack in sponge construction

Mohammad A. AlAhmad
Department of Computer

Science, International Islamic
University of Malaysia, 53100

Jalan Gombak
Kuala Lumpur, Malaysia

malahmads@yahoo.com

Imad Fakhri Alshaikhli
Department of Computer

Science, International Islamic
University of Malaysia, 53100

Jalan Gombak
Kuala Lumpur, Malaysia
imadf@iium.edu.my

Mridul Nandi
Applied Statistics Unit, Indian

Statistical Institute,
 Kolkata, India

mridul_r@isical.ac.in

ABSTRACT
Cryptographic hash functions take an unfixed size of input and
produce a fixed size of an output. A hash function usually has
two main components: a compression function and mode of
operation. Sponge construction is one of the main operations of
modes of used in modern cryptographic hash function. In this
paper, we present multicollisions attack in sponge construction.
In 2004, Joux [3] presented multicollision attack in iterated
hash function. Our attack is similar to Joux attack but
specifically for sponge construction1. We show that finding
multicollisions in sponge construction of messages that hash to
the same value, is not harder finding ordinary collisions. Then,
we use this attack as a tool to prove that concatenating more
than one hash function in order to increase the security level
does not yield to more secure construction.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND
INFORMATION SYSTEMS]: Security and Protection –
Authentication, Insurance.

General Terms
Security

Keywords: Multicollisions - Sponge - Concatenation

1. INTRODUCTION
Cryptographic hash functions take an unfixed size of input and
produce a fixed size of an output. A hash function usually has
two main components: a compression function and mode of
operation. The mode of operation is the design of the hash
function that iterates the basic compression function several
times. But good hash function should behave like a random
oracle [1].Therein, a random oracle maps a variable input
message to infinite uniformly and independent distributed
output message. It is completely random, for each possible

input x, there is a completely random value h(x). In real life, a
true random oracle doesn’t exist, but an ideal designed hash
function should inherit the security criteria of this theoretical
random oracle construction, because, it is unreachable goal for
an iterated hash functions to behave exactly and become strong
as random oracles.

Practically, the main security requirement for hash functions is
collision resistance. Collision resistance is finding two different
messages M and M’ that leads to the same hash digest.
According to the birthday paradox theory, in a group of 23
randomly chosen people, two people will share a birthday with
probability at least ½. More precisely, suppose h denotes the
domain set for all human beings, and for all x, h(x) denotes the
birthday of person x. Then, the range of h consists of 366 days
(if we include February 29). So that, finding two people with
the same birthday is the same thing as finding a collision for
this particular hash function [2]. For this reason, a hash
function for which collision cannot be efficiently solved is
often said to be collision resistant [2]. Accordingly, if h is a

hash function that output bit values, then among the hash values
of 2n/2 different messages, there exists a collision of birthday
paradox based attack. The birthday attack imposes a lower
bound on the sizes of secure hash digest. Yet, a 64-bit message
hash digest considered unsecure. A collision can be found with
probability ½ with just over 232 random hashes. As a result, the
minimum acceptable message hash digest today is 160 bits or
larger due to the birthday attack. The complexity of the
birthday attack is Ө(2n/2). Also, the birthday attack is applicable
to all compression functions in iterated hash functions.

2. PRELIMINARIES
In this section, we give brief introductions about Joux attack
and sponge construction. These two main concepts are the basis
for the attack presented in this paper.

2.1 Joux Attack
Recently, Joux [3] showed an effective multicollisions attack in
iterated hash function and it’s faster than birthday attack. But
before describing Joux attack which is the basis for the attacks
used in this paper, the hashing process of the iterated hash
functions; i.e. Merkle-Damgård; will be described as follows:

 Break the input x into blocks x1, x2…..xt.
 Pad the last block xt with 0-bits if necessary to obtain the

multiple length of r.
 Create the length block xt+1 with bit length r to hold the right

justified binary representation of overall bit-length of x (MD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIN ’13, November 26 - 28 2013, Aksaray, Turkey
Copyright 2013 ACM 978-1-4503-2498-4/13/11 ...$15.00.
http://dx.doi.org/10.1145/2523514.2523551

292

strengthen).
 Inputting x1, x2…..xt to the compression function (iterated

processing) to produce an intermediate value of Hi.
 Hi serves as feedback value to f and is processed with xi+1 in the

next iteration. This implies the need of an initial value (IV) H0
for the first iteration that is often provided pre-defined with bit-
length r.

 Output H(xt)=Ht. [7]

The most distinctive and special part of Merkle-Damgård
construction (mode of operation) is that the problem of
designing a collision resistant hash function reduced to
designing a collision resistant compression function. This
means, if the compression function is collision resistant, then,
the hash function is collision resistant. So, the properties of the
compression function will be transformed to the hash function.
Joux found that finding multicollisions, i.e. r-tuples of
messages that all hash to the same values, is not harder than
finding ordinary collisions, i.e. pairs of messages, even for
extremely large values of r. Then, he uses his multicollisions as
a tool to prove that concatenating the results of several
independent iterated hash functions, i.e. Merkle-Damgård, in
order to build a larger one, does not yield to a secure
construction [3]. To describe such attack, the padding process is
ignored as long as the messages collisions have the same
length. This means, collision with padding will yield to the
collision without padding. An adversary can access a collision
finding machine C, that given as input as a chaining value h
outputs two different blocks X and X’ such that f(h,X) = f(h,X’).
The collision finding machine C should work for all chaining
values of the compression function. To illustrate the basic idea,
he showed how is the 4-collisions can be obtained with two
calls to C. Starting from the initial value IV, an adversary may
call C to find the first two different blocks X0 and X0’ that yield
to a collision where f(h,X0) = f(h,X0’). Again, the same process
will run again but with different blocks X1 and X1’ such that
f(h,X1) = f(h,X1’). Putting the 2 processes altogether, we obtain
the following 4-collisions:

f(f(IV,X0), X1) = f(f(IV,X0), X1’) = f(f(IV,X0’), X1) =
f(f(IV,X0

’), X1’).

Now, this idea can be extended to find 2t collisions in h(x) and
can concluded as follows:

 Let h0 = IV
 For i from 1 to t do:

 Call C and find Xi and Xi’ where f(hi-1,Xi) = f(hi-1,Xi’)
 Let hi = f(hi-1,Xi)

 Pad and output the 2t messages of the form (x1,……., xt,
Padding) where xi is one of the two blocks Xi and Xi’ [3].

As Figure 1 shows that all the intermediate hash values are
equal since all of the 2t hashing process go through h0, h1,…..,
ht [3].

Figure1. Schematic representation of multicollision
construction [3]

Joux used multicollision attack as a tool to produce a collision
attack in concatenated hash functions F and G. He claimed that
concatenating two different iterated hash functions
(F(X)IIG(X)) or slightly different ones is not really secure than
F or G itself. This result is applied to collision resistance,
preimage and second preimage resistance. For a collision
resistance, if the security level of F is 2nf/2 and for G is 2ng/2,
then the complexity of the best attack for FIIG would be
2(nf+ng)/2. But Joux had much better attack which find collisions
on FIIG with complexity ng2

nf/2+2ng/2 if nf ≤ ng. To describe
such attack, first an adversary may use the multicollisions
attack showed in Figure 1 with t equal to ng/2 rounded up, to
construct a 2t collision on F and this costs about t2nf/2 operations
in the compression function f. This yields to 2t different
messages of hash values on the F side. Then, perform a direct
application of the birthday paradox on the obtained set among
the ng-bit hashes of these 2t messages by G. This attack does
not require of G to be an iterative hash function, any hash
function will do. Also, for preimage and second preimage
resistance, assume that an adversary is hashing messages for a
relatively small set of 2m messages. Clearly, the best generic
attack is to find a preimage in that case which costs 2m steps.
And assuming that the output of each of the two concatenated
hash functions is larger than m bit and on this set of messages,
i.e. F, hash a shortcut attack [3]. Then, uses this attack to
recover a candidate preimage or second preimage. So, this
indicates the preimage or second preimage for the other
function. This attack shows the same result as the collision
attack which concatenating two different iterated hash functions
(F(X)IIG(X)) or slightly different ones is not really secure than
F or G itself. More particularly, this attack much better attack
than collision resistance where its complexity is
ng2

nf/2+2ng/2+2nf if nf ≥ ng. To describe such attack, first an
adversary may use the multicollisions attack showed in Figure
1 with t equal to ng rounded up, to construct a 2t collision on F
and this costs about t2nf/2 operations in the compression
function f. Then, search for an additional block (including the
padding of the message) that maps the last chaining value to the
target value of F. Lastly, the adversary will obtain 2t different
messages with the expected hash value on the F side. As
before, preimage and second preimage attack does not require
of G to be an iterative hash function, any hash function will do.
Indeed, Joux attack had a direct impact on Merkle-Damgård
construction and made the cryptography community to look
forward for a new trusted construction. Consequently, Stefan
lucks [4] introduced the wide pipe hash construction as an
intermediate version of Merkle-Damgård to improve the
structural weaknesses of Merkle-Damgård design. Figure 2
shows the wide pipe hash construction. The process is similar
to Merkle-Damgård algorithm steps except of having a larger
internal state size, which means the final hash digest is smaller
than the internal state size of bit length.

1This is not the case for Keccak SHA-3 winner candidate, where
Keccak is a wide pipe sponge construction which has the
capacity c = 2n, and the hash digest is n, which means, there is a
truncation process in the last function f, hence the attack in this
paper is not applicable for Keccak hash function.

293

Figure 2. The wide pipe hash construction [4]

Also, the final compression function compresses the internal
state length (for ex, 2n- bit) to output a hash digest of n-bit.
This simply can be achieved by discarding the last half of 2n-
bit output. Also, Mridul Nandi and Souradyauti Paul [5]
proposed the fast wide pipe construction. It is twice faster than
the wide pipe construction. Figure 3 shows the fast wide pipe
construction. As the Figure shows, the input (IVs) for each
compression function is divided into halves.

Figure 3. The fast wide pipe hash construction [5]

The first half is inputted in the compression function and the
other half is XORed with the output for the same compression
function. The feed-forward process makes the overall design
faster. Hence, faster process is obtained. The final output of the
hash digest can be truncated to the desired digest length using
the final compression function.

2.2 The Sponge Construction
Sponge construction is an iterative construction designed by
Guido Bertoni, Joan Daemen, Micheal Peeter and Gilles Van
Assche to replace Merkle-Damgård construction [6]. It is a
construction that maps a variable length input “M” to a
variable length output. Namely, by using a fixed-length
transformation (or permutation) f that operates on a fixed
number of b = r + c bits. Where b is the width, r is the bitrate, c
is the capacity and variable output called Z of length n as
Figure 4 shown. The sponge construction operates in three
phases:

 Initialization: the message “M” is padded by appending a ‘1’
bit followed by the minimal (possibly zero) number of ‘0’ bits
to reach a length that is a multiple of r.

 Absorbing phase: The r-bit message blocks are XORed with
the first r bits of the state of the function F. After processing all
the message blocks, the squeezing phase starts.

 Squeezing phase: The first r bits of the state are returned as
output blocks of the function F. lastly, the number of output
blocks is chosen by the user [6].

Figure4. The sponge construction [6]

3. CONSTRUCTING MULTICOLLISIONS
In this section, we show that multicollisions attack on sponge
construction can be done in an efficient way. But before
describing the attack, let us remark that the padding process is
neglected as long as the messages have the same length. More
precisely, since the padding process occur in the last block of
message “M”, then, all intermediate chaining values have
identical lengths. Also, presenting the notion capacity which
was introduced first in sponge construction et. al [6]. It was the
first step towards separating the hash digest length from
security level of hash functions. So that, it is clear that the
smaller capacity c, the more vulnerable sponge construction
become. Where the original Merkle-Damgård construction
assumes that c=n, which expose it to Joux attack. A possible
direction for Merkle-Damgård construction is to enlarge the
internal state, i.e. 2n, and then truncates the final desired hash
digest output with transformation function, i.e. n, as shown in
the patched versions of Merkle-Damgård construction in the
section 2.1. Clearly, the security level of a hash function is
limited to the length of the hash digest of that hash function.
Where, enlarging the internal state, i.e. 2n, then, truncating the
final result to n, resists Joux attack of that hash function. More
precisely, in sponge construction, the resistance of inner
collision is limited with capacity c with complexity of the order
2c/2. To describe the multicollision attack in sponge
construction, we assume that the capacity c=n, where n is the
size of the hash digest. And, we assume that we can access the
finding collision machine C, where given as input h outputs two
different blocks Z and Z’ such that f(h, Z) = f(h, Z’). This
collision finding machine will use the generic birthday attack to
find the collision. To illustrate the basic idea, we first show
how 4-collisions can be obtained with two calls to C. Staring
from the initial value IV, we use a first call to C to obtain two
different blocks Z0 and Z0

’ that yield to collision f(h, Z0) = f(h,
Z0

’). Let d0 denotes this common value and using a second call

294

to C, we will find two other blocks Z1 and Z1
’ such that f(h, Z1)

= f(h, Z1
’) [3]. Putting these two steps together, we obtain the

following 4-collisions:

f(f(IV, Z0), Z1) = f(f(IV, Z0), Z1
’) = f(f(IV, Z0

’), Z1) =
f(f(IV, Z0

’), Z1
’)

In more details to describe the attack, we will perform the
generic birthday attack 1 (BD1) for messages M1 and M1

’

(assuming W1=0), then input them to f along with h0. The
output of finding collision machine C are Z1 and Z1

’ where f(h,
Z1) = f(h, Z1

’) = d0 (collision of birthday attack 1). For the next
iteration of f, we will adjust the value of Z1 and Z1

’ to become 0.
That’s will output W2 and h1 which are the inputs for the next
iteration along with the generic birthday attack 2 (BD2) for
messages M2 and M2

’. The output of finding collision machine
C are Z2 and Z2

’ where f(h, Z2) = f(h, Z2
’) = d1 (collision of

birthday attack 2). Figure 5 shows the basic idea of the
collision.

Figure 5. Multicollisions in sponge construction

This basic idea can be extended to much larger collisions by
using more calls to machine C. More precisely, using t calls, we
can build 2t in H [3]. The attack work as follows:

 Let W1=0 XORed with M1 and M1
’.

 Let h0 = IV.
 For i from 1 to t do:
1. Call C and find Zi, Zi’ and di-1 where f(hi-1, Mi) =Zi and f(hi-1,

Mi’) =Zi’.
2. And, di-1 = f(hi-1, Mi) = f(hi-1, Mi’)=Zi = Zi

’.
3. Let Zi, Zi

’ = 0 and call C to produce hi = f(di-1,Zi/Zi
’).

4. Let Wi XORed with Mi/Mi
’ then go to step 1, we repeat this

process until we obtain the final result ht.
 Pad and output the 2t messages of the form (m1,……., mt,

Padding) where mi is one of the two blocks Mi and Mi’.

Figure 6 shows a schematic representation of multicollisions on
sponge construction which generalize the idea of the attack.
The collision d0 is obtained every other iteration (or
permutation). For example, we need 4 iterations (or
permutations) of f in order to obtain 2-collisions. This yields to
have 4 different pairs of combinations, i.e. M1IIZ1, M1IIZ1

’,
M1

’IIZ1 and M1
’IIZ1

’. So that, this particular attack costs 2*2n/2
with complexity Ө (2n/2 +).

Figure 6. Schematic representation of multicollisions on

sponge construction

Generalizing the attack, we obtain a cost with ()*2n/2 with

complexity Ө (()*2n/2 +).

4. ON THE SECURITY OF THE
CONCATENATED HASH FUNCTIONS

Joux proved that concatenating two hash functions (at least one
of them has MD construction), i.e. FIIG, is not really secure
than F or G itself. This result is applicable to collision
resistance, preimage resistance and second preimage resistance.
In this section, we prove that concatenating two hash functions,
i.e. FIIG, where at least one of them has sponge construction is
not really secure than F or G itself. We apply this result to
collision resistance, preimage resistance and second preimage
resistance.

4.1 Collision resistance
With respect to collision resistance, the security level of any
hash function is 2n/2. Then, if the security level of F is 2nf/2 and
for G is 2ng/2, then the complexity of the best attack for FIIG
would be 2(nf+ng)/2. But there exists much better attack which
find collisions for FIIG with complexity ng2

nf/2+2ng/2 if nf ≤ ng.
To describe such attack, we use the multicollision algorithm
explained in section 3 as a tool with t equal to ng/2 rounded up,
to construct a 2t collision on F side and this costs about t2nf/2
operations in the compression function f. This yields to 2t
different messages of hash values on the F side. Then, perform
a direct application of the birthday paradox on the obtained set
among the ng-bit hashes of these 2t messages by G. This attack
does not require of G to be an iterative hash function, any hash
function will do (but, one of them require having sponge
construction). Thus, concatenating two independent hash
functions does not improve the collision resistance [3].

4.2 Preimage and second preimage
resistance
With respect to preimage and second preimage resistance, the
security level of any hash function is 2n. Then, if the security
level of F is 2nf and for G is 2ng, then the complexity of the best
attack for FIIG would be 2(nf+ng). As with collision resistance,
there exists much better attack which find collisions for FIIG
with complexity ng2

nf/2+2ng/2+2nf if nf ≥ ng. To describe such
attack, we use the multicollision algorithm explained in section
3 as a tool of Figure 1 with t equal to ng rounded up, to
construct a 2t collision on F and this costs about t2nf/2 operations
in the compression function f. Then, search for an additional
block (including the padding of the message) that maps the last
chaining value to the target value of F. Lastly, the adversary
will obtain 2t different messages with the expected hash value
on the F side. Once again, preimage and second preimage
attack does not require of G to be an iterative hash function,
any hash function will do [3] (but, one of them require having
sponge construction). Thus, concatenating two independent

295

hash functions does not improve the preimage and second
preimage resistance.

5. EXTENSIONS OF MULTICOLLISION
ATTACK

Multicollisions attack presented in section 3 can be extended to
three or more concatenated hash functions. To illustrate the
idea, we assume K is a third hash function with security level
2nk, then, we use the attack in section 3 to build a 2t collision on
FIIG. This yield to collision on K based on Joux observation.
When nf = ng = nk = n, the expression of the complexity is
simplified to n2. 2n/2. In general, a simultaneous collision on s
different n-bit hash functions can be found with complexity ns-

1.2n/2. This means, the security level of such a construction
stays within the security of a single hash function. Also, if we
build a hash function by concatenating G(F(X)IIX) or
(G(X)IIF(X))). This is more complicated than the GIIF
construction. But, the same attack can be applied, where a 2t is
collisions is found on F(X), which fixes the F(X) in the first half
of the big hash function, also the copy of F(X) in the call to G
[3], which yields to collision on the part of G. The preimage
attack can be adapted to two different concatenated examples
presented here of the concatenated hash functions.

6. CONCLUSION
In this paper, we have showed that multicollisions attack on
sponge construction is not really harder than ordinary collision.
Also, this attack is used to prove that concatenating two
separate independent hash functions is not secure than using
one of them by itself. This result is applied to collision
resistance, preimage resistance and second preimage resistance.
Modern hash functions designers that use sponge construction
should consider our attack by enlarging the capacity c at least
double the size of the hash digest to obtain excellent resistance.

7. REFERENCES
[1] Bellare, M., & Rogaway, P. 1993. Random oracles are

practical: A paradigm for designing efficient protocols. Paper
presented at the Proceedings of the 1st ACM conference on
Computer and communications security.

[2] Stinson, D. R. 2006. Cryptography: theory and practice: CRC
press.

[3] Joux, A. 2004. Multicollisions in iterated hash functions.
Application to cascaded constructions. Paper presented at the
Advances in Cryptology–CRYPTO 2004.

[4] Lucks, S. 2004. Design principles for iterated hash functions,
Cryptology ePrint Archive, Report 2004/253. DOI =
http://eprint. iacr. org

[5] Nandi, M. and S. Paul 2010. Speeding up the wide-pipe: Secure
and fast hashing. Paper presented in Cryptology-INDOCRYPT
2010: 144-162.

[6] Bertoni, G., J. Daemen 2007. Sponge functions. ECRYPT hash
workshop.

[7] Damgård, I. B. 1990. A design principle for hash functions.
Advances in Cryptology—CRYPTO’89 Proceedings, Springer.

[8] Taha, I. a. A., Mohammad and Munther, Khansaa 2012.
Comparison and analysis study of sha-3 finallists. International
Conference on Advanced Computer Science Applications and
Technologies(26-28 Nov 2012), 7.

[9] Biham, E., R. Chen 2005. Collisions of SHA-0 and Reduced
SHA-1. Advances in Cryptology–EUROCRYPT, Springer: 36-
57.

[10] Matusiewicz, K. and J. Pieprzyk 2006. Finding good
differential patterns for attacks on SHA-1. Coding and
Cryptography, Springer: 164-177.

[11] Biham, E. and O. Dunkelman 2006. A framework for iterative
hash functions-HAIFA. Second NIST Cryptographic Hash
Workshop.

[12] Bertoni, G., J. Daemen 2009. "Keccak specifications."
Submission to NIST (Round 2).

296

