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a b s t r a c t

We present Corona, a deterministic self-stabilizing algorithm for skip list construction
in structured overlay networks. Corona operates in the low-atomicity message-passing
asynchronous system model. Corona requires constant process memory space for its
operation and, therefore, scales well. We prove the general necessary conditions limiting
the initial states from which a self-stabilizing structured overlay network in a message-
passing system can be constructed. The conditions require that initial state information has
to form a weakly connected graph and it should only contain identifiers that are present
in the system. We formally describe Corona and rigorously prove that it stabilizes from an
arbitrary initial state subject to the necessary conditions. We extend Corona to construct a
skip graph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In a peer-to-peer overlay network, each process can communicate with any other peer process over the underlying
network as long as the process is aware of the peer’s identifier. These identifier records form the network topology. Peer-
to-peer networks are effective for distributed information storage, group communication and large scale computations. The
amount of research literature on this subject is extensive [2–4,6,15,19,24,25,27].

The skip list [22] is a popular peer-to-peer topology as it allows efficient search and quick topology updates. Specifically,
both identifier search aswell as process deletion or addition in a skip list takeO(log n) steps, where n is the number of nodes.
A skip list may be either randomized or deterministic. While the randomized version may be simpler to implement, the
deterministic one provides firm search and topology update bounds as well as greater assurance against failures, malicious
behavior and unfavorable topology changes.

A skip list may not be sufficiently robust against node crashes. Indeed, a single node failure may disconnect the skip list.
Neither is a skip list particularly suitable for concurrent searches. The standardmeasures of robustness and concurrency are
expansion and congestion [4]. The expansion and congestion of the skip list are O(1/n) and Ω(n) respectively. A skip list
extension, the skip graph [3], significantly improves these metrics.

Peer-to-peer systems may include millions of nodes. At such scale, fault-tolerance and topology maintenance become a
major concern. An optimistic failure recovery approach called self-stabilization [12] may be particularly suitable for peer-
to-peer systems [1,21] as it is oblivious to the exact nature of the fault. Once the influence of the fault stops, regardless of the
state in which this fault leaves the system, the self-stabilizing system is guaranteed to return to a correct state and remain
in correct states thereafter.

Due to the large initial state space, self-stabilizationprograms require careful correctness proofs. If practical lowatomicity
communication models such as the message-passing system are considered, such proofs may become difficult both to
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construct and to verify. Furthermore, a large initial state space may lead to excessive process memory demands during
stabilization, especially during initial linearization: topological sorting of the processes [21].

Our contribution. We start the paper by determining the limits of existence of self-stabilizing solutions for peer-to-peer
networks in message-passing systems. We prove that self-stabilization is possible only if the initial state information forms
a weakly-connected graph and if all the process identifiers in the initial state are present in the system.

Themain contribution of the paper is Corona: a self-stabilizing deterministic skip list construction algorithm inmessage-
passing systems. To the best of our knowledge Corona is the first such algorithm. Subject to the proven necessary initial state
restrictions, we show that Corona stabilizes and builds a 1-2 skip list.

Instead of struggling to counteract the large state space ofmessage-passing systems, we are able to use the low-atomicity
model to our advantage: the channels are employed as extra identifier storage space. This allows us to keep the Corona
design relatively straightforward and to linearize processes using process memory that is independent of the system size.
We extend Corona to build skip graphs and to accommodate topology updates.

Related literature. There is a large body of work on how to efficiently maintain peer-to-peer networks. Most of the results
focus on preserving the overlay network in the legal set of states. Relatively few studies address the self-stabilization of such
networks. Moreover, due to the topology being part of the system state, the majority of classic self-stabilizing techniques
are not applicable to peer-to-peer networks.

Let us survey the publications in self-stabilization that specifically address peer-to-peer networks. A few papers address
simple topologies. The Iterative Successor Pointer Rewiring Protocol [11] and the Ring Network [26] organize the nodes
in a sorted ring. Onus et al. [20] linearize a network into a sorted linked list. However, they use a simplified synchronized
communication model for their algorithm.

There are several studies of more sophisticated structures. Hérault et al. [16] describe a self-stabilizing spanning tree
algorithm. Caron et al. [8] present a Snap-Stabilizing Prefix Tree for Peer-to-Peer systems while Bianchi et al. [7] show
stabilizing peer-to-peer spatial filters. Dolev et al. [13] present a self-stabilizing hypertree. Clouser et al. [10] propose
a deterministic self-stabilizing skip list for shared register communication model. Gall et al. [14] discuss models that
capture the parallel time complexity of locally self-stabilizing networks that avoids bottlenecks and contention. Jacob et al.
[23] generalize insights gained from graph linearization to two dimensions and present a self-stabilizing construction for
Delaunay graphs. However, none of these structures approach the congestion and expansion of a skip graph. In another
paper, Jacob et al. [17] present a self-stabilizing, randomized variant of the skip graph and show that it can recover its
network topology from any weakly connected state in O(log2 n) communication rounds with high probability in a simple,
synchronized message-passing model. In [5], the authors present a general framework for the self-stabilizing construction
of any overlay network. However, the algorithm requires the knowledge of the 2-hop neighborhood for each node and
involves, in the worst case, the construction of a clique. In that way, failures at the structure of the overlay network can
easily be detected and repaired.

2. Model, notation and definitions

Peer-to-peer networks. A peer-to-peer overlay network program consists of a set N of n processes with unique identifiers.
A process can communicatewith any other peer process as long as it has a record of the peer’s identifier. The communication
is by passing messages through channels.

Peer-to-peer networks often require ordering the processes in a sequence according to their identifiers. Two processes a
and b are consequent, denoted cnsq(a, b), if (∀c : c ∈ N : (c < a) ∨ (b < c)). That is, two consequent processes do not have
an identifier between them. For the sake of completeness, we assume that −∞ is consequent with the smallest id process
in the system. Similarly, the largest id process is consequent with +∞.

Graph terminology helps us in reasoning about peer-to-peer networks. A link is a pair of identifiers (a, b) defined as
follows: eithermessagemessage(b) carrying identifier b is in the incoming channel of process a, or process a stores identifier
b in its local memory. See Fig. 2 for an illustration of this. Note that a thus defined link is directed. In referring to such a
directed link (a, b), we always state the predecessor process a first and the successor process b second. The length of a link
(a, b) is the number of processes c such that a < c < b. Note that the length of (a, b) is zero if cnsq(a, b) is true. The
length of (−∞, a) is zero if a is the smallest id in the system, it is n otherwise. Similarly, the length of (b, +∞) is zero if b
is maximum and n otherwise. The process connectivity graph CP is the graph formed by the links of the identifiers stored by
the processes. A channel connectivitymultigraph CC includes both locally stored andmessage-based links. Self-loop links are
not considered. By this definition, CP is a subgraph of CC . Note that besides the processes, CC and CP may contain two nodes
+∞ and −∞ and the corresponding links to them. Graph CP captures current network connectivity information that all
the processes keep. CC reflects the connectivity data that is stored implicitly in the messages in communication channels.
Again, refer to Fig. 2 for an example of both graph types.

Computation model. Each process contains a set of variables and actions. A channel C is a special kind of variable whose
values are sets ofmessages.We assume that the only information amessage carries is process identifiers.We further assume
that amessage carries exactly one identifier. The identifiers are defined. That is, amessage cannot carry+∞ or−∞. Channel
message capacity is unbounded. Messages cannot be lost. The order of message receipts does not have to match the order of
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transmission. That is, the channels are not FIFO. Due to this, we treat all messages sent to a particular process as belonging
to a single incoming channel.

An action has the form ⟨guard⟩ −→ ⟨command⟩. guard is either a predicate over the contents of the incoming channel or
true. In the latter case the predicate and corresponding action are timeout. command is a sequence of statements assigning
new values to the variables of the process or sending messages to other processes.

Program state is an assignment of a value to every variable of each process and messages to each channel. A program
state may be arbitrary, the messages and process variables may contain identifiers that are not present in the network. An
identifier is existing if it is present in the network. An action is enabled in some state if its guard is true in this state. It is
disabled in this state otherwise. A timeout action is always enabled. We consider programs with timeout actions, hence, in
every state there is at least one enabled action.

A computation is an infinite fair sequence of states such that for each state si, the next state si+1 is obtained by executing
the command of an action that is enabled in si. This disallows the overlap of action execution. That is, action execution
is atomic. We assume two kinds of fairness of computation: weak fairness of action execution and fair message receipt.
Weak fairness of action execution means that if an action is enabled in all but finitely many states of the computation then
this action is executed infinitely often. Fair message receipt means that if the computation contains a state where there is a
message in a channel, the computation also contains a later state where this message is not present in the channel.

We focus on programs that do not manipulate the internals of process identifiers. Specifically, a program is compare–
store–send if the only operations that it does with process identifiers is comparing them, storing them in local process
memory and sending them in a message. That is, operations on identifiers such as addition, radix computation, hashing,
etc. are not used. In a compare–store–send program, if a process does not store an identifier in its local memory, the process
may learn this identifier only by receiving it in a message. A compare–store–send program cannot introduce new identifiers
to the network, it can only operate on the ids that are already there. If a computation of a compare–store–send program
starts from a state where every identifier is existing, each state of this computation contains only existing identifiers.

A state conforms to a predicate if this predicate is true in this state; otherwise the state violates the predicate. By this
definition, every state conforms to predicate true and none conforms to false. Let A and B be predicates over program states.
Predicate A is closed with respect to the program actions if every state of the computation that starts in a state conforming
to A also conforms to A. Predicate A converges to B if both A and B are closed and any computation starting from a state
conforming to A contains a state conforming to B.

Problems. The overlay network problem maps each set of identifiers to a set of acceptable process connectivity graphs. For
example, for every set of processes, the linearization problem specifies exactly one graph where each process is linked with
its consequent processes.

Linearized overlay networks simplify process search. When discussing a linearized network, processes with identifiers
greater than p are to the right of p, while processes with identifiers smaller than p are to the left of p. That is, we consider
processes arranged in increasing order of identifiers from left to right. See Fig. 2 for an illustration.

The process search time in a simple linearized network is proportional to its size. Thismay not be acceptable in large-scale
networks. Shortcut links are added to accelerate navigation. In a deterministic skip list, these links are created recursively
by levels. The zero (bottom) level is the linearized list of processes. In a k-l skip list, a node a has a link to node b at level i if
a and b are between k and l hops away at level i− 1. For example, in a 1-2 skip list, a and b are linked at level i if they are no
more than three and no less than two hops away at level i − 1. Refer to Fig. 4 for an example of a 1-2 skip list.

In the k-l skip list construction problem, a set of processes is mapped to the set of possible skip lists. Note that in a
linearization problem the set of identifiers uniquely determines the connectivity graph. In case of k-l skip list construction,
depending on which processes participate at each level, the same list of identifiers may form several possible skip lists.
Hence, the skip list construction problem specifies multiple acceptable CP graphs for a single set of processes.

We define the two problem properties below to aid us in formally stating the necessary conditions for the existence
of a solution. An overlay network problem is single component if it maps every set of processes to a weakly connected
process connectivity graph. Intuitively, a single component network overlay problem prohibits a program from separating
the network into multiple components. The linearization and skip list construction problem are single component.

An overlay network problem PG is disconnecting if there is at least one set of processes S such that for every channel
connectivity graph CP to which PG maps S, there is a cut set CS such that |CS| < n− 1 which disconnects S. Note that such
a cut set exists for any graph except for a completely connected one. Essentially, a disconnecting network overlay problem
requires that in at least one case the desired channel connectivity graph is not completely connected. In other words, the
program has to disconnect at least two processes. Naturally, both the linearization and skip list construction problem are
disconnecting.

Problem solutions. A program PG satisfies or solves a problem PR from a predicate P if, for every set S, every computation
of PG that starts in a state conforming to P contains a suffix with the following property. The channel connectivity graph
CP is the same in every state of this suffix and this CP is one of the graphs to which PR maps S. That is, starting from the
initial state in P , the solution has to implement at least one of the required CPs.

Program stabilization is graph-identical if every computation of a stabilizing program contains a suffix where CC contains
the same links as CP . Such a program generates CC links that are already present in CP . If a process of such program receives
a message, this message carries an identifier that the recipient process already stores and the process ignores the message.
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A program is unconditionally stabilizing (or just stabilizing) if it solves the problem from P ≡ true. That is, every compu-
tation of a stabilizing program, regardless of the initial state, contains a correct suffix. Unconditional stabilization may be
too strong for a program to possess. A program is conditionally stabilizing if P ≢ true. That is, such a program stabilizes from
a limited set P of states.

We define two special cases of conditionally stabilizing programs. A program is weakly channel-connectivity stabilizing
if it stabilizes only from the initial states where the channel-connectivity graph is weakly connected. A program is existing
identifier stabilizing if it stabilizes only from states where every identifier is existing.

3. Necessary conditions

The necessary conditions stated in this section show that common overlay network topology specifications prohibit the
existence of unconditionally stabilizing solutions. The necessary conditions are that initially the channel connectivity graphs
need to be connected and non-existing identifiers are not present.

The proofs for these conditions rely on the lemma below. Intuitively, the lemma states that for the processes to form a
connected topology they have to be at least weakly connected initially.

Lemma 1. If a computation of a compare–store–send program starts in a state where the channel connectivity graph CC is
disconnected, the graph is disconnected in every state of this computation.

Proof. Let us consider, without loss of generality, a program state where the connectivity graph consists of two components
C1 and C2. Assume the opposite: the computation starting from this state contains states where the two components of CC
are connected. Let us consider the first such state s1. In this state there must be two processes a ∈ C1 and b ∈ C2 that are
neighbors. Assume the link is from a to b. That is, (a, b) ∈ CC .

Since si is the first connected state, this link does not belong to CC in the preceding state si−1. Since the program is
compare–store–send, the new link cannot appear in the process memory, it must be due to a message sent to a by another
process c in state si−1. A message to a carrying b can only be sent by a process c that has links to both a and b in si−1.

Since (c, a) ∈ CC , c belongs to the same component C1 as a in si−1, and since (c, b) ∈ CC , c belongs to the same component
C2 as b in si−1. This means that C1 and C2 are weakly connected in a state si−1 that precedes si. However, we assumed that si
is the first state where the two components are connected. This contradiction proves the lemma. �

Theorem 1. If a compare–store–send self-stabilizing program is a solution to a single-component overlay network problem, this
program must be weakly channel-connectivity stabilizing.

Proof. Assume the opposite. That is, there is a self-stabilizing program PG that solves a single-component overlay network
problem PR and it is not necessarily weakly channel-connectivity stabilizing.

Since PG is a solution to PR, for each set S, every computation of PG contains a suffix with the prescribed CP . Since
PG is not necessarily weakly channel-connectivity stabilizing, this holds true for computations starting from a state where
CC is disconnected. Program PG is a compare–store–send program. According to Lemma 1, if its computation starts from a
state where CC is disconnected, it is disconnected in every state of this computation. Since CP is a subgraph of CC , it has to be
disconnected in every state of this computation as well. However,PR is single-component. SincePR is single-component,
it maps every set of processes S to a weakly connected process CP . This means that, contrary to our initial assumption, PR
is not a solution to PG. Hence the theorem. �

Theorem 2. If a graph-identical compare–store–send program is a stabilizing solution to a single-component disconnecting
overlay network problem, this program must be existing identifier stabilizing.

Proof. Assume the opposite. Let PG be a compare–store–send program that is a graph-identical self-stabilizing solution to
a single-component disconnecting overlay network problem PR. Since PR is disconnecting, there is a set of processes S
such that for every connectivity graph, there is a cut set that disconnects this graph.

Consider a computationσ ofPGwith set S. LetCP be theprocess connectivity graph towhich this computation converges.
Let CS be the cut set that separates S into two subsets S1 and S2. Since PG is graph-identical, σ contains a suffix where, in
every state, CC has the same links as CP . Let s1 be the first state of this suffix.

We examine a set of processes S1 ∪ S2 and construct a new state of the program for this state as follows. The state of
every process in S1 ∪ S2 and its incoming channel is the same as in the initial state of σ . In addition, the incoming channels
of each process a belonging to S1 ∪S2 in this state contain themessages that are sent to a by processes of CS in σ before state
s1. From this new state, we execute the actions of PG for processes S1 ∪ S2 in the same sequence as in σ . The presence of
messages from processes in CP allows us to do that. After this procedure we arrive at a state s2. We then execute the actions
of PG in arbitrary fair manner. Thus the constructed sequence is a computation of PG.

Note that each process of S1 ∪ S2 has the same state in s1 and s2. Since CS was a cut set of CP in s1, there are no links
between processes of S1 and S2 in either s1 or s2. This means that CP is disconnected in s2. Graph CC has the same links as
CP in s1. This means that CC is disconnected in s2 as well. According to Lemma 1, both CC and CP are disconnected in every
state of this computation past s2.

However, PG is supposed to be a solution to PR. Problem PR is single-component. This means our constructed
computation has to contain a suffix where CP is weakly connected in every state. This contradiction proves the theorem. �
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process p
variables

r, // right identifier, greater than p
l // left identifier, less than p

actions
message(id) ∈ p.C −→

receive message(id)
if id > p then

if id < r then
if r < +∞ then

sendmessage(r) to id
r := id

else
send message(id) to r

if id < p then
if id > l then

if l > −∞ then
sendmessage(l) to id

l := id
else

send message(id) to l
true −→

if r < +∞ then send message(p) to r
if l > −∞ then send message(p) to l

Fig. 1. Linearization component of Corona (l-Corona).

4. Linearization

Problem statement. In the linearization problem, each set of processes is mapped to the following process connectivity
graph CP . Each process p in CP contains exactly two outgoing links: p.r and p.l. The links conform to the following
predicate LP:

(∀a, b ∈ N : a < b : cnsq(a, b) ⇔ ((a.r = b) ∧ (b.l = a)))

The predicate states that two processes are neighbors if and only if they are consequent. The linearization problem
requires processes to keep links to consequent processes only. Hence the problem is disconnecting and the necessary
conditions for the existence of the solution to disconnecting problems stated in Theorem 2 apply to linearization.

l-Corona description. Each process pmaintains two variables r and l as required by the problem specification. The range of
each variable are the process identifiers respectively to the left and to the right of p. That is, r can only store identifiers that
are greater than p, while l – less than p. The value of each variable may be undefined. In this case it is equal to respectively
−∞ and +∞. If non-existent identifiers are not present in the initial state of the program computation, the l variable of the
smallest id process and the r variable of the largest id process are always set to −∞ and +∞ respectively.

The code of l-Corona is shown in Fig. 1. Each process p of l-Corona contains two actions: a receive action and a timeout
action. The receive action is enabled when there is a message in the incoming channel p.C . The operation of the action
depends on the id carried by the message. If id is greater than p, it is compared to r . If id is less than r , then p discovered a
closer right neighbor. Process p then forwards the old right neighbor identifier to the new process and reassigns its variable
r . However, if the received id is no less than r , then the current right neighbor of p is no further away than id. In this case
p sends id to process r . If r is not initialized, it is assigned the received id. The identifier that is smaller than p is handled
similarly. The timeout action sends the process identifier to its left and right neighbors. An example computation of l-Corona
is shown in Fig. 2. By its operation of processes in l-Corona, they only compare, store and forward process identifiers. Hence,
l-Corona is a compare–store–send program and the necessary conditions of Theorem 1 apply to it.

Correctness proof. We prove that l-Corona is weakly-channel connected and existing identifier stabilizing to the
linearization problem. Therefore, throughout this subsection we assume that in every initial state, only existing identifiers
are present and the channel connectivity graph is weakly connected.

Observe that due to the operation of the algorithm, in case a < b, link (a, b) can only be replaced by a link (a, c) such
that a < c < b. Likewise, link (b, a) can only be replaced by (b, c) such that a < c < b. That is, a link in CP can only
be shortened. An example of CP link shortening is shown in Fig. 2: the link (b, d) is shortened to (b, c) in transition from
Fig. 2(a) to Fig. 2(b). Note that every process in CP contains exactly two outgoing links. One is pointing to the left, the other
to the right.

Similarly, in case a < b, a link (a, b) ∈ CC \ CP can be replaced only by a link (c, b) such that a < c < b. In the other
direction, a link (b, a) ∈ CC \ CP can be replaced only by a link (c, a) such that a < c < b. Again, the link in CC can only be
shortened. For example, link (c, a) ∈ CC \ CP in Fig. 2 is shortened to (b, a) in transition from Fig. 2(c) to Fig. 2(d). Note that
unlike CP , a process may contain more than two outgoing links in CC \ CP . Furthermore, while some links are shortened,
longer ones may be added by timeout actions.
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(a) initial state. (b) b receives message with c , updates b.r , and forwards
d to c .

(c) d receives message with b, updates d.l. (d) c receivesmessage with a, forwards it to b; c receives
d, updates c.r .

(e) b receives message with a, updates b.l; b times out
and sends its id to a; c times out and sends its id to d.

(f) a receives message with b, updates a.r , forwards c
to b; d receives message with c , updates d.l, forwards b
to c; when these messages are received, the network is
linearized.

Fig. 2. Example computation of l-Corona. To simplify the picture each process is represented by two nodes. The primed nodes are the process’ incoming
channel. Solid lines denote identifiers stored in l and r of each process. Dashed lines are identifiers in the incoming channel.

Lemma 2. If a computation of l-Corona starts from a state where CC contains a path from process a to b, then in every state of
this computation, there is a path from a to b as well.

Proof. We show that the execution of every action of l-Corona either adds a link, retains all links, or replaces a link by a
path. Therefore, none of the paths that contain these links before the action execution are disconnected by it.

Let us consider the receive action and focus on the identifier that the message carries. The self-loops are not considered
in CC . Therefore, the case of id = p is not applicable. We will only discuss the case of id > p, the case of id < p is similar. If
r = +∞, the link is retained by p, and CC does not change.

Otherwise, this action of the program depends on the value of r . If id > r , then p forwards id to process r . That is, the
link (p, id) is replaced by the path (p, r) and (r, id) in CC . Now, if id is between p and r , then p sends the value of r to id and
updates the value of its right link to id. In other words, the link (p, id) is not changed in CC but link (p, r) is replaced by the
path (p, id) and (id, r). Thus, the receive action of l-Corona does not disconnect paths in CC .

The case of the timeout action is straightforward as it only adds links to CC and thus cannot disconnect paths in CC . �

Lemma 3. If a computation of l-Corona starts in a state where for some process a there are two links (a, b) ∈ CP and
(a, c) ∈ CC \ CP such that a < c < b, then this computation contains a state where there is a link (a, d) ∈ CP where d ≤ c.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \ CP are such that b < c < a, then this computation contains a state
where there is a link (a, d) ∈ CP where d ≥ c.

Intuitively, Lemma 3 states that if there is a link in the incoming channel of a process that is shorter thanwhat the process
already stores, then the process’ links will eventually be shortened.

Proof. We prove the lemma for the right neighbor of process a only. The proof for the left neighbor is similar. If link (a, c)
belongs to CC \CP , then there is a message-carrying c in the incoming channel of a. If link (a, b) belongs to CP , then the right
neighbor of a is b > c.

Due to the fair message receipt assumption, the message carrying c will eventually be received by a. At the time of the
message receipt, the right neighbor of a may be less than or equal to c , or greater than c. In the former case, the conclusion
of the lemma is satisfied. In the latter case, once a receives c , it replaces its right neighbor with c. Hence, the lemma. �

Lemma 4. If a computation of l-Corona starts in a state where for some process a there is an edge (a, b) ∈ CP and (a, c) ∈ CC \CP
such that a < b < c, then the computation contains a state where there is a link (d, c) ∈ CP, where d ≤ b.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \ CP are such that c < b < a, then this computation contains a state
where there is a link (d, c) ∈ CP, where d ≥ b.



R.M. Nor et al. / Theoretical Computer Science 512 (2013) 119–129 125

Intuitively, the above lemma states that if there is a longer link in the channel, it will be shortened by forwarding the id
creating this link to the id’s closer successor.

Proof. Weprove the lemma for the right neighbor of a. The condition of the lemma states that the right neighbor of a is b and
there is a message-carrying c > b in the incoming channel of a. Due to the fair message receipt assumption, the message-
carrying c will eventually be received by a. Due to the operation of the algorithm, at the time of the message receipt, the
right neighbor d of a is no greater than b. Since c is greater than b, a forwards c to d. The lemma follows. �

Lemma 5. If a computation of l-Corona starts in a state where for some processes a, b, and c such that a < c < b (or a > c > b),
there are edges (a, b) ∈ CP and (c, a) ∈ CC, then the computation contains a state where either some edge in CP is shorter than
in the initial state or (a, c) ∈ CP.

Proof. The timeout action in process c is always enabled. When executed, it adds message(c) to the incoming channel of
process a. Then, the lemma follows from Lemma 3. �

Lemma 6. If a computation starts in a state where there is a link (a, b) ∈ CP, then the computation contains a state where some
link in CP is shorter than in the initial state or there is a link (b, a) ∈ CP.

Proof. Assume without loss of generality that a < b. Once a executes its always enabled timeout action, link (b, a) is added
to CC . We need to prove that either some link in CP is shortened or this link is added to CP .

Let us consider a link (b, c) ∈ CP such that c < b. There can be three cases with respect to the relationship between a
and c. In case c < a, the lemma follows from Lemma 3. In case c = a, the claim of the lemma is already satisfied. The case
of c > a is the most involved.

According to Lemma 4, if c > a, the computation contains a state where a shorter link to a belongs to CC . That is, there
is a process d such that a < d ≤ c and (a, d) ∈ CC . Let us consider link (e, d) ∈ CP such that e < d.

If e < a, then, according to Lemma 3, some link in CP shortens. If e = a, then some link in CP shortens according to
Lemma 5. In both cases the claim of this lemma is satisfied.

Let us now consider the casewhere e > a. According to Lemma 4, the link to process a in CC shortens. The same argument
applies to the new shorter link to a in CC . That is, either some link in CP shortens or a link to a shortens. Since the length of
the link to a is finite, some link in CP eventually shortens. Hence the lemma. �

Lemma 7. If the computation is such that if (a, b) ∈ CP then (b, a) ∈ CP in every state of the computation, then this computation
contains a suffix where ((a, b) ∈ CP) ⇒ ((a, b) ∈ CC).

Lemma 7 states that if CP does not change in a computation then eventually, the links in CP contain all the links of CC .
The proof follows from the operation of the algorithm.

Lemma 8. Let CP be strongly connected in some state of the system. Let it also be that for every pair of processes a and b in this
state, if (a, b) ∈ CP then (b, a) ∈ CP. In this case, this state satisfies LP.

Proof. Let us prove the if part of LP first. Assume that the state in the condition of the lemma violates LP . That is, there is
a pair of consequent processes u and v that are not neighbors. By condition of the lemma, CP is strongly connected. This
means that there is a path from u to v. Let us consider the shortest such path. Since u and v are not neighbors, the path
has to include processes to the left or to the right of both u and v. Assume without loss of generality u < v and the path
includes processes to the right of u and v. Let us consider the rightmost process in this path w. Let x and y be the processes
that respectively precede and follow w in this path. Since w is the rightmost, both x and w are to the left of w.

Note that each process in CP can have at most one outgoing left and one outgoing right neighbor. By the condition of the
lemma the outgoing neighbor of a process is also its incoming neighbor. Since x precedes w in the path from u to v and y
followsw, x is the incoming and y is the outgoing neighbors ofw. Yet, x and y are both to the left ofw. This means that x = y.
However, this also means that w can be eliminated from the path from u to v and can be shortened this way. However, we
considered the shortest path from u and v. It cannot be further shortened. We arrived at a contradiction which proves the if
part of the lemma.

The only if part follows from the observation that each process can only have a single right and single left neighbor. That
is, if a process is already a neighbor with the consequent process it cannot be a neighbor with any other process. �

Theorem 3. Program l-Corona is a weakly channel-connectivity existing identifier stabilizing solution to the linearization
problem.

Proof. To prove the theorem we show that l-Corona stabilizes to LP . The closure of LP follows immediately from the
operation of l-Corona. Indeed, LP states that the links in CP connect consequent processes. The only change that l-Corona
can do to links in CP is shorten them. However, the length of the links to consequent processes is already zero and they
cannot be further shortened.

Let us now address the convergence of LP . Consider a computation of l-Corona. According to Lemma 6, for each process
a if there is a link (a, b) ∈ CP , then some link is shortened in CP or there is a state where (b, a) also belongs to CP . Since
links can be shortened only a finite number of times in a computation, there is a suffix of this computation where in every
state if (a, b) belongs to CP so does (b, a). Note that CP does not change in this suffix of the computation, hence, according
to Lemma 7, there is also a suffix where links in CP and CC are identical.
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process p
constants

p.(i − 1).r, p.(i − 1).l // identifiers of right and left neighbors at level i − 1
variables

p.i.st, // own status at level i, either up or down
// constant and set to up for process with highest id
// constant and set to down for process with lowest id

p.i.str // status of right neighbor
actions

message(status) ∈ p.C from p.(i − 1).r −→

receive message(status),
p.i.str := status,
if (p.i.st = up) ∧ (p.i.str = up) then

p.i.st := down

message(status) ∈ p.C from p.(i − 1).l −→

receive message(status),
if (status = down) ∧ (p.i.st = down) ∧ (p.i.str = down) then

p.i.st := up

true −→

if p.(i − 1).r < +∞ then send message(p.i.st) to p.(i − 1).r,
if p.(i − 1).l > −∞ then send message(p.i.st) to p.(i − 1).l

Fig. 3. Status decision component of skip list part of Corona (sd-Corona).

According to Lemma 2, CC is not disconnected during a computation of l-Corona. This means that in this suffix CP is also
connected. According to Lemma 6 then, CP is strongly connected. Then, according to Lemma 8, this computation contains a
state where LP is satisfied. Hence the theorem. �

5. Skip list stabilization

Problem statement. The problemmaps each set of processes to a set of valid 1-2 skip lists. In each skip list the bottom level
is linearized and for each level i > 0, the following predicate SL holds: any two processes a and b are neighbors at level i if
the distance between a and b at level i− 1 is no less than 2 and no more than 3 hops. The 1-2 skip list construction problem
requires a limited number of processes to be connected. For example, in the system of more than 3 processes, the processes
with the largest and the smallest identifiers are not connected to each other. That is, the problem is disconnecting and the
necessary conditions of Theorem 1 apply to it.

s-Corona description. The code of s-Corona is shown in Fig. 3. Each level of s-Corona has two sublevels: status decision
sublevel – sd-Corona – and neighbor linking sublevel – sn-Corona.

sd-Corona of level i uses neighborhood information of level i−1 to determine the status of a process at level i. Depending
on whether the process participates at level i, the process status is either up or down. If a process is down at level i it is
down at all levels above i.

On the basis of this information, sn-Corona links p with its left and right neighbor at level i. Specifically, each process
in sn-Corona at level i maintains three-hop neighborhood information of level i − 1. This maintenance is done by each
process periodically sending its immediate neighborhood information to the neighbors and attaching the hop count. All
processes record this information and propagate it up to three hops away. If a process learns that it has obsolete or incorrect
neighborhood information, before updating the information, the process sends itself this obsolete link at level 0 for l-Corona
to handle. This ensures the overall CC connectivity preservation.

If process p at level i is up, sn-Corona inspects this locally stored three-hop neighborhood information to determine the
nearest up neighbor and connects it to p.

This stabilizing implementation of sn-Corona is relatively straightforward. We, therefore, do not present it in detail and
focus on sd-Corona instead.

sd-Corona description. sd-Corona operates similarly at each level. At every level it maintains a set of variables that belong
to only this level. At level i, process p of sd-Corona makes use of the identities p.(i− 1).l and p.(i− 1).r of its respective left
and right neighbors at level i−1. sd-Corona at level i does not change these identities. Therefore, they are assumed constant
for the operation of sd-Corona at this level.

At level i, process p of sd-Corona maintains two status variables: p.i.st and p.i.str . The values for both are up and down.
Variable p.i.st stores the status of p itself. Variable p.i.str keeps the status of the right neighbor of p. The status of the
rightmost and leftmost process at level i are fixed as up and down respectively and are considered constant.

The idea of sd-Corona is to ensure that no two consequent neighbors are up and no three of them are down. To break
symmetry in deciding who of the neighbors should change status, the decision of the right neighbor is favored.

sd-Corona has three guards. The timeout guard sends the status of p to its neighbors. The two receive guards process
messages from the left and right neighbors of p. If p receives a status value from its right neighbor, it updates p.i.str and its
own status. If both p and its right neighbor are up then p changes its status to down. If p receives a message from its left
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(a) initial state. (b) at level 0, processes d and h receive messages that
their right neighbors are up, they change their statuses
to down.

(c) at level 0, e receives message from f that its status is
up and changes its own status todown; f and i are linked
at level 1.

(d) at level 0, d receives messages that both c and e are
down and changes its status to up, links with neighbors
at level 1.

(e) at level 1, i receives message from f that its status is
down, updates its own status to up.

(f) at level 2, i links with b.

Fig. 4. Example computation of s-Corona. For simplicity, neighbor links are always assumed bidirectional.

neighbor and discovers that its neighbors and itself are down, it changes its own status to up. The operation of s-Corona is
illustrated in Fig. 4. Observe that, like the linearization component, s-Corona is a compare–store–send program and, as per
Theorem 2, can only stabilize if the initial state only contains existing identifiers.

Correctness proof

Lemma 9. If process a at level i of sd-Corona changes its status st only a finite number of times in the computation, then this
computation contains a suffix where everymessage in the outgoing channel of a carries the same value as a.i.st and b.i.str = a.i.st
for the left neighbor b of a.

Proposition 1. If, in some computation, none of the processes at some level i change their status, then this computation also
contains a suffix where for each process a, a.i.r and a.i.l point to the nearest up process at this level and do not change.

Lemma 10. If in some computation none of the processes at some level i − 1 change their right and left neighbors, then this
computation also contains a suffix where none of the processes at level i change their status.

Proof. The proof is by induction on the number of processes on level i. The induction is carried out from the right end of the
process list. To simplify the description we assume the processes are numbered 1 to n from right to left. Note that the status
of the first (rightmost) process is constant. Assume that there is a suffix of the computations where j − 1 right processes do
not change their status.

According to Lemma 9, this computation also contains a suffix where all messages from process j−1 to process j, as well
as j.r have the same value as the status of process j− 1. In this case there is a suffix of the computation, where j.i.r does not
change. Then, in this suffix j.i.st may change at most once. Specifically, if j.i.st and j.i.r are both down, then j.i.st can be set
to up if j receives a message with status = down from process j + 1. Thus, this computation contains a suffix where j does
not change its status. The lemma follows by induction. �

Lemma 11. In each computation of s-Corona, every process p changes its status and its left and right neighbors only finitely many
times.

Proof. The proof is by induction on the levels of s-Corona. At level zero, the lemma holds due to Theorem 3. Assume that
there is a suffix of this computationwhere the status and neighbors of processes at level i−1 do not change. Then, according
to Lemma 10, there is a suffix of this computationwhere the status of processes at level i does not change either. If that is the
case, then, due to Proposition 1, there is also a suffixwhere the neighbors do not change. The lemma follows by induction. �

Theorem 4. s-Corona is a weakly channel-connectivity existing identifiers stabilizing solution to the 1-2 skip list construction
problem.

Proof. To prove the theorem, we show that s-Corona converges to the 1-2 skip list predicate SL. According to Lemma 11,
the processes in sd-Corona change their status only finitely many times.

Due to the algorithm design, this means that the sd-Corona converges to predicate where two consequent processes at
level i − 1 cannot be up and three consequent ones cannot be down. That is, the process status at level i is appropriate for
the 1-2 skip list. Due to Proposition 1 they are correctly linked. Hence the theorem. �
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6. Extensions

Topology updates
A topology update is a node joining or leaving the set of processes N . We address topology updates when the system is

in the correct state, i.e., we consider the simple case where a node joins or leaves a linearized set of processes. We do not
address the stabilization of the topology update procedure.

Formally, we assume that in the initial state of the computation, the program satisfies the linearization predicate LP . That
is, we consider re-constructing the skip-list above the linearized set of processes in case a single node is removed or added
to this set.

When determining the status of level i only once the flags w.r.t. level i − 1 have been set, a joining node will only start
getting integrated in level i once it finds its correct place in level i− 1. The following lemma can be proven by analyzing the
several cases of adding or removing the node from level i − 1.

Lemma 12. A removal or addition of a node at level i − 1 leads to at most one process status change in sd-Corona at level i.

Proposition 2. The operation of sn-Corona at level i in case of a single status change of a node in sd-Corona at level i is equivalent
to a single state transition that reconnects up neighbors at level i.

Recursively applying Lemma 12 and Proposition 2 to the levels of the skip list, we obtain the following theorem.

Theorem 5. The number of topological changes Corona requires to reconstruct the skip graph after a single topology update is in
O(log n).

Skip graphs. Let us describe the extension of Corona to skip-graph. The skip list may not be robust or convenient for
concurrent searches. Indeed, a failure of a single top-level node may disconnect the system. In a k-l skip graph [3], the
processes at level i − 1 that do not participate at level i form an alternative list at level i. If processes do not participate
in this alternative one, they form the next one and so on. The process continues recursively both at the main as well as at
the alternative list. That is, each list splits into several lists at each level. This way, most nodes have links at all levels of the
skip graph. This property makes skip graphs more robust and better suited for concurrent searchers than skip lists.

Corona can be extended to construct a skip-graph. For that, Corona has to run two instances of sn-Corona at each level i.
The main instance operates as before, while the alternative instance constructs an alternative list out of the nodes that do
not participate in the main list. Note that in the 1-2 skip list, one alternative list can always be constructed. An instance of
sd-Corona at level i+ 1 runs each of the lists. The process of splitting into main and alternative lists continues iteratively on
each thus formed list. No changes are required in either l-Corona or sd-Corona.

k-l skip list. Corona can be extended to accommodate an arbitrary k-l skip list in several ways. For example, each process in
the extended version of Corona maintains the status of k − 1 right neighbors and one left neighbor. If p detects that it is up
and there is an up right neighbor less than l hops away, then p changes its status to down. If p is down and there are k + 1
consequent down processes, it goes up.

7. Future work

In closing we would like to outline a couple of interesting research directions that extend our work to further its
applicability and significance. We established that the presence of non-existent identifiers and lack of connectivity make
self-stabilization impossible in asynchronous systems. This opens the question as to what is the minimal oracles, similar
to Chandra and Toueg’s failure detectors [9], that enable self-stabilization. Corona seems to be able to handle topological
changes within rather limited locality. It would be interesting to see if Corona can be extended to handle churn [18]:
stabilization during topology updates.
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