Relationship between Pulmonary Function and the Degree of Spinal Deformity among Adolescent Idiopathic Scoliosis (AIS) Patients.

Joehaimey Johari¹, Sobri Nor¹, Andrew Lam², Ahmad Sabri Omar¹, Ahmad Tajudin Abdullah², Azriani Ab Rahman³, Mohd Ariff Sharifudin⁴, Mohd Imran Yusof⁵.

¹Department of Orthopaedics, Hospital Raja Perempuan Zainab II (HRPZII), Malaysia.
²Department of Orthopaedics, Hospital Sultanah Nurzahirah, Malaysia.
³Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia (USM).
⁴Department of Orthopaedics, Traumatology and Rehabilitation, International Islamic University Malaysia (IIUM).
⁵Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia (USM).
Scoliosis- Definition

• Is a complex, 3-dimensional spinal deformity:
 – Coronal
 – Sagittal (Hypokyphosis)
 – Axial (rotation)
lamina thinner and vertebral canal narrower on convex side

spinous process deviated to concave side

vertebral body distorted toward convex side

rib pushed posteriorly and thoracic cage narrowed

rib pushed laterally and anteriorly
Idiopathic Scoliosis

- International Scoliosis Society (3 types)
 - Infantile (birth - 3 years)
 - Juvenile (4 - 10 years)
 - Adolescent (10 - 17 years)

- Scoliosis Research Society (SRS):
 - Early Onset - before 5yrs of age.
 - Late onset - after 5yrs of age.

- What is crucial about age of onset is whether a substantial thoracic deformity is present before the age of 5 years, in which case there is real risk of cardiopulmonary compromise.
Adolescent idiopathic scoliosis (AIS) often causes deformity of the thorax. With deformed spine and rib cage, the lung parenchyma is compressed which may lead to decrease in volume and lung compliance.
Methodology

• A retrospective record review was conducted among patients with adolescent idiopathic scoliosis (AIS) aged 13 to 24 years, admitted to our institution (HRPZII) for surgical intervention from 2000 to 2013.

• A total of 38 patients were studied
Methodology

• The curvature of spinal deformity was measured by Cobb method on anterior-posterior radiographs.

• The forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV 1) were used to evaluate their pre operative pulmonary function.
Cobb Angle Measurement

- Curve magnitude measured in degrees of curvature
- Standard full-length AP radiograph needed.

- **Cobb angle** - Line drawn along upper end plate of upper end vertebra and lower end plate of lower end vertebra. Perpendiculars drawn from these lines. Angle of intersection measured

- **John Cobb** was a father figure of scoliosis surgery in America.
Results

Table 1: Demographic characteristics of the patients with adolescent idiopathic scoliosis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean (SD) [n (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>16.7 (6.04)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>3 (7.9)*</td>
</tr>
<tr>
<td>female</td>
<td>35 (92.1)*</td>
</tr>
<tr>
<td>Cobb angle</td>
<td>58.1 (19.63)</td>
</tr>
<tr>
<td>Pre operative FEV1</td>
<td>80.5 (21.68)</td>
</tr>
<tr>
<td>Pre operative FVC</td>
<td>75.3 (20.05)</td>
</tr>
</tbody>
</table>
Table 2: Relationship between Cobb angle with FVC and FEV1

*Simple Linear Regression

<table>
<thead>
<tr>
<th></th>
<th>b (95% Confidence Interval B)</th>
<th>p value*</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>-.326 (-.683, 0.030)</td>
<td>0.072</td>
<td>0.087</td>
</tr>
<tr>
<td>FVC</td>
<td>-.319 (-.647, 0.009)</td>
<td>0.057</td>
<td>0.097</td>
</tr>
</tbody>
</table>

No significant Relationship between Cobb angle with FVC and FEV1
• An inverse relationship between spinal deformity and pulmonary function has been reported by a few studies. Vitale, Matsumoto et al. 2008 found that the degree of thoracic curves was negatively correlated with FEV1.

• There was also a trend toward significant negative correlations between thoracic curves and FVC. Patients with larger thoracic curves had lower pulmonary function measured by FEV1 and FVC.
Table 4: Median FVC and FEV1 according to different level of apical vertebrae
** Kruskal- Wallis test

<table>
<thead>
<tr>
<th></th>
<th>L1, L2 & L3</th>
<th>T6, T7 & T8</th>
<th>T9-T12</th>
<th>p value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>92 (30)</td>
<td>68.5 (36)</td>
<td>74 (19)</td>
<td>0.006</td>
</tr>
<tr>
<td>FEV1</td>
<td>93 (49)</td>
<td>67 (41)</td>
<td>82 (26)</td>
<td>0.118</td>
</tr>
</tbody>
</table>

- more proximally located spinal curve resulted in more impairment in the pulmonary function.
Table 5: Median FVC and FEV1 according to different level of upper end vertebrae

** Mann-Whitney test

<table>
<thead>
<tr>
<th></th>
<th>T6, T7 & T8</th>
<th>T9-T12</th>
<th>p value**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=17</td>
<td>n=21</td>
<td></td>
</tr>
<tr>
<td>median (IQR)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>75 (18)</td>
<td>76 (41)</td>
<td>0.953</td>
</tr>
<tr>
<td>FEV1</td>
<td>82 (21)</td>
<td>79 (41)</td>
<td>0.436</td>
</tr>
</tbody>
</table>

No significant difference in the Median FVC and FEV1 according to different level of upper end vertebrae
Table 6: Median FVC and FEV1 according to different level of lower end vertebrae

** Mann-Whitney test**

<table>
<thead>
<tr>
<th></th>
<th>L 1,2,3</th>
<th>T 6-12</th>
<th>p value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=16</td>
<td>n=22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>median (IQR)*</td>
<td>median (IQR)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>83.5(19)</td>
<td>70.5 (31)</td>
<td>0.014</td>
</tr>
<tr>
<td>FEV1</td>
<td>86(20)</td>
<td>78 (32)</td>
<td>0.055</td>
</tr>
</tbody>
</table>

The median FVC was significantly higher among those with affected L1,2,3 than those with affected T6-12
Figure 4: Relationship between age and pre operative FVC
Relationship between age and FVC and FEV1.

- The older the patients, the poorer the pulmonary function was.
- This is supported by other study which described that the decline in spirometric values over 20 years of age was of the same magnitude as the predicted decline due to aging. Thus respiratory failure develops in adults with large angle scoliosis and a low vital capacity when normal aging reduces the ventilatory capacity further (Pehrsson, Bake et al. 1991).
Conclusion & Recommendation

- Impairment of lung function was seen in more severe spinal deformity, more proximally located curve and in older patients.
- Pulmonary impairment from spinal deformity remains to be one of the indications for surgical intervention.
- Pulmonary function testing is useful in the preoperative evaluation of patients with adolescent idiopathic scoliosis.

