International Journal of Communication Networks &mfdrmation Security (IJCNIS)

80
Vol. 5, No. 2, August 2013

A Detailed Survey on various aspects of SQL
Injection in Web Applications: Vulnerabillities,
Innovative Attacks and Remedies

Diallo Abdoulaye Kindy? Al-Sakib Khan Path&n

'CustomWare, Kuala Lumpur, Malaysia
2Department of Computer Science, International Istddriversity Malaysia, Kuala Lumpur, Malaysia
diallol4@gmail.com and sakib@iium.edu.my

Abstract: In today’s world, Web applications play a veryprevention techniques. We present this topic irag that the

important role in individual life as well as in amgountry's
development. Web applications have gone througtery vapid
growth in the recent years and their adoption isingfaster than
that was expected few years ago. Now-a-days, bdlicof
transactions are done online with the aid of défer Web
applications. Though these applications are usedhundreds of
people, in many cases the security level is wedlicltwmakes them
vulnerable to get compromised. In most of the sdesaa user has
to be identified before any communication is esshgld with the
backend database. An arbitrary user should nolitbeed access to
the system without proof of valid credentials. Heew a crafted
injection gives access to unauthorized users. Thismostly
accomplished via SQL Injection input. In spite bé tdevelopment
of different approaches to prevent SQL injectidrstill remains an
alarming threat to Web applications. In this papee, present a
detailed survey on various types of SQL Injectiarnerabilities,
attacks, and their prevention techniques. AlongsidEsenting our
findings from the study, we also note down futuxpeetations and
possible development of countermeasures against [Bfgkction
attacks.

Keywords: Attack, Injection, SQL, Vulnerability, Web

1. Introduction

In the recent years, the World Wide Web (WWW) ha

work could be beneficial both for the general readgad for
the researchers in the area for their future resesorks.

SQL Injection is a type of injection or attack inVéeb
application, in which the attacker provides StruetuQuery
Language (SQL) code to a user input box of a Wein fm
gain unauthorized and unlimited access. The attackeut
is transmitted into an SQL query in such a way th&rms
an SQL code [1], [10]. In fact, SQL Injection istegorized
as the top-10 2010 Web application vulnerabilities
experienced by Web applications according to OWASP
(Open Web Application Security Project) [9].

SQL Injection Vulnerabilities (SQLIVS) are one diet
open doors for hackers to explore. Hence, thegtitaie a
severe threat for Web application contents. Therkey and
basis of SQLIVs is quite simple and well understood
insufficient validation of user input [1]. To mit¢e these
vulnerabilities, many prevention techniques haveenbe
suggested such as manual approach, automated epproa
secure coding practices, static analysis, usingpgves
statements, and so forth. Though, proposed appesduve
achieved their goals to some extent, SQL Injection
Vulnerabilities in Web applications remain as a onaj
concern among application developers.

S Relating to the above mentioned texts, the keyaivje of

witnessed a staggering growth of many online Weﬁ'lis work is to present a detailed survey on varitypes of

applications which have been developed for meetargpus
purposes.

serve this huge number of users, great volumesat# dre
stored in Web application databases in differemtspaf the
globe. From time to time, the users need to intendih the
backend databases via the user interfaces forusatiasks
such as: updating data, making queries, extractatg, and
so forth. For all these operations, design interfptays a
crucial role, the quality of which has a great ictpan the
security of the stored data in the database. Adesare Web
application design may allow crafted injection andlicious
update on the backend database. This trend cae t@tasof
damages and thefts of trusted users’ sensitive dgta
unauthorized users. In the worst case, the attatlagr gain
full control over the Web application and totallgstroy or
damage the system. This is successfully achiemegkneral,
via SQL injection attacks on the online Web appiaa
database. In this paper, we have reviewed modtieofrell-
known and new SQL Injection attacks, vulnerabitiend

Now-a-days, almost everyone in touch wi
‘computer technology’ is somehow connected online. To

QL Injection vulnerabilities, attacks, and theneyention

chniques. Alongside presenting our findings ftomstudy,
we also note down future expectations and possible
development of countermeasures against SQL Injectio
attacks. The key purpose of this study is to addties issue
from all necessary angles so that the work coulddssl as a
reference work by the researchers and practition€ils
today, a comprehensive survey on this topic is imiss
hence, we believe our work could fill the void.

Though there are some previous works on SQL lgesti
they have mainly the following limitations:

- Not up-to-date: the growth of e-commerce is almost
parallel to the alarming threats targeting Web igptibns
using SQL Injections. Hence, the relevance andracguof
some previous publications are now questionable. Mbre
the time passes by, the more kinds of attacks evahd put
less confidence on the previously noted information

81

International Journal of Communication Networks &mfdrmation Security (IJCNIS) Vol. 5, No. 2, August 2013

Normal User Input Process in a Web
Application

Firewall

B
Result .
T
Set =
Application Internal Database
Server Firewall Server

h 4

ELECT * FROM accounts WHERE username= ‘Ahmad’
AND password= ‘provided_password’;

v

Note: Only Ahmad Rows are
returned.

Figure 1. Normal user input process in a Web application.

- Lack of practice: In almost all the previous works, therepaper noting the contribution of this work alongsid

is a critical lack of a discussion about the Webliaption

security training tutorials used in practice. Sdmes, there

is huge gap between theory and practice. Henasyrinwork
we mention the tools that should be known for peattuse
and tackling SQL injection attacks. The informatiabout
these tools is missing in most, if not all of tireyaous works
we have analyzed.

After this initial information, the rest of the papis
organized as follows: in Section 2, we provide S@jkection
background and categorize the vulnerabilities aftdcks.
Section 3 presents an in-depth look at the moshoamSQL
Injection attacks. Section 4 notes down the tontstatorials
that we have used for our work, Section 5 talksualvarious
approaches for detecting SQL Injection attacks,tiGed
notes down the available countermeasures to tackieus
SQL Injection attacks and a comparative analysigaofous
attacks and schemes, and finally, Section 7 comeslutie

mentioning our future research objectives.

2. SQL Injection: The ‘Need-to-Know’ Aspects

2.1 What is SQL?

SQL (pronounced as‘'S-Q-L” or "sequel) stands for
Structured Query Language. It is the high leveglsage used

in various relational Database Management Systems
(DBMS). SQL was originally developed in the ear§70’s

by Edgar F. Codd at IBM. It was commercial and miest-
widely used language for all relational databasEbis
language is a declarative computer language whigd h
elements that include clauses, expressions, ptedica
queries, and statements. It allows the users maflyata
insertion, (i) data updating, (iii) query, (iv) lé¢éon, and
many more features (thus gives the user the povier o
manipulating databases) [6], [7].

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

82
Vol. 5, No. 2, August 2013

Malicious Input Process in a Web
Application

5
=
T Internal Database
Application
pg SrvoE Firewall Server

SELECT * FROM accounts WHERE username= ‘Ahmad

‘OR 1=1--" AND password= ‘not needed;

Successful SQL
Injection !!!

Note: Ahmad Rows OR wherever
1 =1 are returned,
(ALL ROWS)

Figure 2. Malicious input process in a Web application.

2.2 SQL Injection Vulnerability versus SQL Injection
Attack

Vulnerability in any system is defined as a bugploole,
weakness or flaw existing in the system that caexpoited
by an unauthorized user in order to gain unlimiedess to
the stored data. Attack generally means an illegaless,
gained through well crafted mechanisms, to an eafiin or
system. An SQL Injection Attack (SQLIA) is a typkaitack
[30] whereby an attacker (a crafted user) adds coal$

information of some kind of information system. An
unauthorized access to this data by a crafted caemose
threat to their confidentiality, integrity, and hatity. As a
result, the system could bear heavy loss in giyingper
services to its users or it may even face complegtruction.
Sometimes such type of collapse of a system caatian the
existence of a company or a bank or an industiy hdppens
against the information system of a hospital, thivape
information of the patients may be leaked out whichld

threaten their reputation or may become a case of

keywords or operators into an SQL query (e.g., SQHefamation. Attackers may even use such type aélatb get

malicious code statements), then injects it toex irput box
of a Web application. This allows the attacker &avénillegal
and unrestricted access to the data stored at abkebd
database. Figure 1 shows the normal user inpuepsoin a
Web application, which is self-explanatory. Fig@eshows
an example how a malicious input could be processeal
Web application. In this case, the malicious infgitthe
carefully formulated SQL query which passes throtigh
system’s verification method. To explore this ameare, in
this paper, we investigate both the SQL
vulnerabilities and SQL Injection attacks.

2.3 Why is SQL Injection a Threat?

Injecting a Web application is the synonym of hagviltegal
access to the data stored in the database. Thealatgtimes
could be confidential and of high value like theatfncial
secrets of a bank or list of financial transacti@mssecret

confidential information that is related to the iaaal
security of a country. Hence, SQL Injection coulel \ery
dangerous in many cases depending on the platfdrarew
the attack is launched and where it gets succesgdating
rogue users to the target system.

2.4 Types of Vulnerabilities in Web Programming
Languages
There could be various types of vulnerabilities ttauld be

Injectioexploited for SQL Injection. In this section, weepent the

most common security vulnerabilities found in Web
programming languages [12] through which SQL Irject
attacks are usually launched. We show the majoestyqf
vulnerabilities at a glance in Table 1.

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

Table 1.Types of Vulnerabilities at a glance

83
Vol. 5, No. 2, August 2013

Injected Statement: SELECT * FROM
users WHERE name='Lucia01’ OR '1'

Vulnerability Basic Id =1
Types asic ldea Input: 'Luciadl' OR '1' ='1'
Lack of clear distinction between data types Output: _this will return rows for
Type | accepted as input in the programming language Lucia01 OR wherever one equals to one
yp 1€ p! which is true for all rows. Hence, all
used for the Web application development. rows will be returned.
Delay of operation analysis till the runtime
Type Il phase where the current variables are considered
rather than the source code expressions. 3.1.2 Numeric SQL Injection
Tvoe Il \éVegk (.:oncernbof type ts)peuﬂ%anon |ntt_he . This type of Injection is quasi-similar to the akadiscussed.
ype v:rss'gn‘ ahumber can be used as a stiing or VICee e main difference is that; here numeric values @sed
The validation of the user input is not well Instea(_j of strings. Ther(_-:‘fore, the attacker woutghut
Type IV defined or sanitized. Inputs are not checked ~ NUMeric values to a conditional query statement wWauld
correctly. always evaluate to a true statement.

2.5 Types of SQL Injection Attacks (SQLIAS): Past ad
Present

It is not an easy task to find out and categoritgypes of
SQLIAs. The same attack may be called with differeames
in different cases depending on the system scenirithis

sub-section, we present all the commonly known SQL

Injection attacks [1], [11] that so far have beéscdvered
along with newly invented innovative attacks. Wee ube
terminologies as deem to be appropriate. Tableo2shhe
types of SQL Injection attacks with brief desciiois.

3. An In-Depth Look At the Most common
SQL Injection Attacks

Among various types of SQLI attacks, some are feety

used by the attackers. It is imperative to knowdbemonly
used major attacks among all available attackscelen this
section, we present an in-depth look at some ofntlost

common SQL Injection attacks. We explain each afs¢h
major attacks with simple examples, wherever apsig

3.1 Tautology

SQL injection codes are injected into one or
conditional statements so that they are alwaysuated to be
true. Under this technique, we may have the folhmwtypes
and scenarios of attacks:

3.1.1 Sring SQL Injection

This type of injection is also referred to as AN @ittack

[14], [15]. The attacker inputs SQL tokens or gsrto a
conditional query statement that always evaluatea true
statement. The interesting issue with this typattzfck is that
instead of returning only one row in a table, isisuccessful,
it causes all of the rows in the database tablgetad by the
query to be returned. The goal behind this typattck may
include the following: (a) Bypassing authenticafiofb)

Identifying parameters that can be injected,
Extraction of data [1].

Scenario

U Normal Statement: SELECT * FROM users
WHERE name='Lucia01
Input: Lucia01 Output:
only

Lucia's Rows

and (c

Scenario
. Normal Statement: SELECT * FROM users

WHERE id="101"

Input: 101 Output: id 101's Rows only.

Injected Statement: SELECT * FROM
users WHERE name="'101' OR '1' ='1".
Input: '101'OR'1'='1"

Output: this will return rows for
'101'id or wherever one equals to one
(ALL ROWS)

Note : the crafted user can be more
specific by adding ORDER BY clause to
get exactly what he wants on time. The
malicious input will look like: 101 OR
1=1 ORDER BY salary desc;

3.1.3 Comments Attack

This type of attack takes advantage of the inlioementing
allowed by SQL [29] - the malicious code and comtsen
whatever comes after the “--” in the WHERE clau$ke
point is that everything after the comment charactdll be
ignored. Comments Attack can be combined with eithe
String or Numeric SQL Injection so that it perforras a
tautology which always evaluates to a true statémen

more

Scenario
e User Input: ‘userl OR ‘1" ="1 —'.

Generated SQL Query SELECT username,

password FROM clients WHERE username =

‘userl OR ‘1’ ='1 —' AND password =

‘whatever’

In this case, not only the WHERE clause is tramséat
into a tautology by the (OR 1=1) but also the pasdvpart
is also completely ignored, hence only the usernganewill
be checked [1], [29].

3.2 Inference

An attacker derives logical conclusions from theveer to
a true/false question concerning the database. ughra
successful inference, crafted users change thevioelat the
database.

84
International Journal of Communication Networks &mfdrmation Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 2. Types of SQLIAs at a glance.

Types of Attack Working Method
. SQL injection codes are injected into one or mareditional statements so that
Tautologies
they are always evaluated to be true.
Logically Incorrect Using error messages rejected by the databaseda$eful data facilitating
Queries injection of the backend database.
Union Query Injected query is joined with a safe query usirg kbyword UNION in order to get

information related to other tables from the apglan.

Many databases have built-in stored proceduresaftheker executes these built-
in functions using malicious SQL Injection codes.

Piggy-Backed Queries Additional malicious queriesiaserted into an original injected query.

An attacker derives logical conclusions from theveer to a true/false question

Stored Procedure

Inference)
- Blind concerning the da}tabgse. . ' .
Iniection - Information is collected by inferring from the rigd of the page after
Jec questioning the server true/false questions.
- Timing . . . :
Attacks - An attacker collects information by observing thesponse time

(behavior) of the database.
It aims to avoid being identified by secure defeasioding and automated
prevention mechanisms. It is usually combined wither attack techniques.

Alternate Encodings

3.2.1 Blind SQL Injection 3.2.3 Database Backdoors

In this type of attack, useful information for egjling the Databases are used not only for data storage swtalkeep
backend database is collected by inferring fromrépties of malicious activity like a trigger. In this case, attacker can
the page after questioning the server some trge/falset a trigger in order to get the user input anditgéirected
questions. It is very similar to a normal SQL Ijen [14], to his or her e-mail, for example.

[15]. However, when an attacker attempts to exphoit

application, rather than getting a useful error sags, they Scenario

get a generic page specified by the developeradst&his 101; CREATE TRIGGER myBackDoor BEFORE

makes exploiting a potential SQL Injection attacloren INSERT ON employee FOR EACH ROW BEGIN
difficult but not impossible. An attacker can sttt access to UPDATE employee SET

sensitive data by asking a series of True and Fplsstions email="hacker@me.com'WHERE userid =
through SQL statements. NEW.userid.

3.2.4 Command SQL Injection

S The purpose of this injection is to inject and erec
http://victim/listproducts.asp?cat=boo commands specified by the hacker in the vulnerable
ks application. The application executing the unwarggstem

SELECT * from PRODUCTS WHERE -
category="books' commands is like a pseudo system-shell controligdhle

Scenario

http://victim/listproducts.asp?cat=boo attacker. Lack of correct input data validation riffis,
ks'or '1'="1. cookies, HTTP headers, etc.) is the main vulnetgbil
SELECT * from PRODUCTS WHERE exploited by attackers for a successful injectitindiffers
category="books’ or '1'="1". from code injection in the sense that the attacidas his
own code to the existing code. Hence, the default
3.2.2 Timing Attacks functionalities of the application are extended hwitt

executing system commands. An OS (Operating System)
command injection attack occurs when an attackenyts

to execute system level commands through a vulfeerab
application. Applications are considered vulneratieOS
command injection attack if they utilize user inpat a
system level command.

An attacker collects information by observing tespgonse
time (behavior) of the database. Here the main eonis to
observe the response time that will help the a#iatk decide
wisely on the appropriate injection approach.

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

85
Vol. 5, No. 2, August 2013

Logout @

OWASP WebGoat V5.2 - » o P

LAB: SQL Injection
- - olutic |

Introduction

Cruss Site Scripting (HKSS)
Genial of Service w s
Trmproper Error Handling
Inisction Flaws

Solution videosStage 1; Use String SoL Injection to bypass

authentication. Use SOL injection to log in as
C'Meville') without using the correct
that all FUnoHons are available (inclLoing Search,

Restart this Lesson

password, Verify that Noville's profile can be viswsd and
Create, and Delete).

“ Goat Hills Financial

Insecure Co

mrmunication
Insecure Configuration
e T e e
Session Management Flaws
Web' S

drmin Functions
2RTicnan

SwrASE Foundstion

T Human Resources
[=
Please Login
[Larry Stooge (employee) =1
Password
Login |
ASPE(:T) i

Project wabGost | Repart Bug

Figure 3. OWASP environment/interface.

DWA)

E.

Instructions
Setup

Brute Force VWARNING!
Command Execution
CSRF

File Inclusion ~ ~
o Disclaimer
SEL eeirm (E el the application clear and it s

Upload prevent users from installing DVWVA.

XSS reflected ~
XSS stored General Instructions
DVWA Security
PHP Info
About

Logout

Username: admin
Security Level: high
PHPIDS: disabled

Welcome to Damn Vulnerable Web App!

Damn Wulnerable Web App (DVWA) is a PHP/MySQL web application that is damn vulnerable_ Its main goals
are to be an aid for security professionals to test their skills and tools in a legal environment. help web developers
better understand the processes of securing web applications and aid teachers/students to teach/learn web
application security in a class room environment.

Damn Wulnerable Web App is damn vulnerable! Do not upload it to your hosting provider's public html folder or
any intemet facing web server as it will be compromised. We recommend downloading and installing
onto a local machine inside your LAN which is used solely for testing.

WWe do not take responsibility for the way in which any one uses this application. We have made the purposes of
hould not be used maliciously. We have given warnings and taken measures to

on to live web servers_If your web server is compromised via an installation of
WVVA it is not our responsibility it is the responsibility of the person/s who uploaded and installed it

The help button allows you to view hits/tips for each wulnerability and for each security level on their respective
page.

Figure 4. DVWA environment.

4. Web Application Security Training Tutorials
Used

In this section, we discuss some existing Web Ayajpibn
security tutorials that we have used either onbneoffline
for analysing various mechanisms. These
purposefully contain vulnerabilities for the userdiscover
and exploit.

of the topics is lacking and is left to the userlgéarn. It
focuses more on hands-on part rather than the itepside.
Because of being completely Java-oriented, it ig no
concerned about applications built using other Uzggs
such as PHP or RoR (Ruby on Rails). Figure 3 shamws

tutorial®WASP environment.

DVWA - Damn Vulnerable Web ApplicatiorDyYyWA)
[26] is another practice tool built using PHP/MySQtis an

OWASP - The Open Web Application Security Projectaid for security professionals and Web developetest and

(OWASP) is a 501c3 not-for-profit worldwide chalita
organization focused on improving the security mlecation
software [25]. Tutorials are written in Java. Thigorial

covers the 10 most common Web application vulnétigisi
such as (i) Injection flaws, (ii) Cross-Site Scirgt (XSS),
(iii) Broken Authentication and Session Managemégiv)

Insecure Direct Object References, (v) Cross-Sigugst
Forgery (CSRF), (vi) Security Misconfiguration, ijvi
Insecure Cryptographic Storage, (viii) Failure tesRict
URL Access, (ix) Insufficient Transport Layer Prciien,

and (x) Invalidated Redirects and Forwards. In taidi they
provide hints, prevention, solution, and show jayions.

Every year they present the Top-10 Web Applicatiomternet

vulnerabilities. The source code of the project &haCD

are free of charge and accessible to almost evegy. u

Though it provides comprehensive practices, thdaggtion

try out their skills and tools in a legal practiesvironment.
Besides that, it is a handy approach to train/tesgts (i.e.,
students, teachers, researchers, security profedsjoon
Secure Web Development. The source code and Live&@D
made available for free. This tutorial covers tlh#ofving
topics: Brute Force, Command Execution, CSRF, File
Inclusion, SQL Injection (Blind), Upload, XSS refted, and
XSS stored. Compared to OWASP, it is less comprstie
and covers only few topics. In this tutorial, thése lack of
adequate information not only of direct topic-retat
discussions but also of guidelines, hints, andtewla. Users
can only find information on topics through somevided
links/sources. Figure 4 shows the DVWA
environment.

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

3 Agmratoen Paces Systens (40

-
WEB SECURITY DOLO

EHSECURITE OO

(e SELEL

86
Vol. 5, No. 2, August 2013

Chdogs MenTeb L FILPM o s

ZEMCY =

e, peime

P~ 17 1§

Figure 5. Web Security Dojo environment.

P SEC541 Java Training VMware Remote Console Devices

<2 Applications Places

syster @@

Elle Edit View History Bookmarks Tools Help

Yy = azley Flra

{1 [L npmocainost:s080iessono7_Preparedstatement/

> @.\

isabler [Cookies~

sdaffodil”

_icss- ElForms- [images- @ Information-

|Miscellaneous- /Outliner & IResize~ o*Tools-

To direct input to this vintual machine, press Cul+G.

Figure 6. daffodil lessons.

Web Security Dojo - This is a free open-source self-
contained training environment for Web Application Security
penetration testing. Tools + Targets = Dojo” [27]. The
VmWare image is provided for free. Users can doaaland
install it in a virtual machine at their own paceéthwfull
documentation. Some default targets provided aMWB

literature survey, problem definitions, possiblelusons,
analysis, and comparisons of various approaches.

5. Detecting SQL Injection

In order to protect a Web application from SQL ttjen
attacks, there are two major concerns. Firstlyetlie a great

(Damn Vulnerable Web App), REST Demos, and Jsoﬂged.of a mechanism to detect and exactly ideﬁ@.
demos. They also provide WebGoat, Hackme CasifBi€ction attacks. Secondly, knowledge of SQL lfige

vulnerable application, Insecure Web App and soowdst
like burp suite. It is a very efficient environnidor practice;
however, it seems to be a bit advanced tool foecursty-
practice beginner. The environment of Web SecDitjo is
shown in Figure 5.

Vulnerabilities (SQLIVS) is a must for securing aekV
application. So far, many frameworks have been asetior
suggested to detect SQLIVs in Web applications.eHare
mention the prominent solutions and their workingtimods
in brief to let the readers know about the coreagdbehind

Daffodil — This is also an open source web applicatiofach work.

project designed for learning purpose [28]. It iimi&r to 5.1 SAFELI

OVXASP lart1_d DVWfA appt)rllcatmnsl. ltt cgnta\;csbboth exlgfrst. Fu et al., in [3] propose a Static Analysis Framewn order
an solutions. _ for € selecte € applicatiog; yeect SQL Injection Vulnerabilities. SAFELI fr@work
vulnerabilities. This tutorial also lacks proper pio

discussions. The user has to look for other sourcéad out
more information on selected practices. It shoudniade
more user-friendly so that beginners (i.e., the vaai
practitioners) can work without much hassle of ifirgd
information from here and there. Figure 6 showsapshot
of Daffodil Lessons.

We have discussed all these training tutorials Here
better understanding of the topic by the readerdact, for
our work, we have used all these tutorials sidesibdg- our

aims at identifying the SQL Injection attacks dgrithe
compile-time. This static analysis tool has two mai
advantages. Firstly, it does a White-box Static Ipsia and
secondly, it uses a Hybrid-Constraint Solver. Far YWhite-
box Static Analysis, the proposed approach corsidlee
byte-code and deals mainly with strings. For thebtitl
Constraint Solver, the method implements an efiiic&ring
analysis tool which is able to deal with Boolearigger and
string variables.

87
International Journal of Communication Networks &mfdrmation Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 3.SQL Injection Countermeasures.

Countermeasure Overview
SQL-IDS [2] A specification based approach to detealicious intrusions
Itis a fixed query “template” which is pre-defingaoviding type—
specific placeholders for input data
This scheme identifies illegal queries before tlegigcution.

Prepared Statements [4]

AMNESIA [6] Dynamically-generated queries are compared wittstagcally-built
model using a runtime monitoring
SQLrand [13] A strong random integer is insertethim SQL keywords.
SQL DOM [14] A set of classes that are strongly-typed to a @eslschema are used

to generate SQL statements instead of string méatipo

SQLIA prevention using Stored
Procedures [15], [16]

SQLGuard [17]

Combination between static analysis and runtime toang

The parse trees of the SQL statement before aadwer input are
compared at a run time. The Web script has to bdifrad
Programmer-intended query structures are guessedi hgon

CANDID [18]
evaluation runs over non-attacking candidate inputs
SQLIPA [20] Using user name and password hash values, to imphevsecurity of
the authentication process
A key is inserted at both beginning and end of’asaput. Invalid
SQLCHECK [21] syntactic forms are the attacks. The key strergythmajor issue
DIWeDa [22] To detect various types of intrusiond¥eb Databases applications
Manual approaches [23] Defensive programming anceGedew mechanisms are applied

Static analysis FindBugs and Web vulnerability saagframeworks

Automated approaches [23] are implemented

The implementation of this framework was done owrlaimed and apparent efficiency of the technighe, major
ASP.NET Web applications and it was able to detedrawback of the work is that it was not tested widal
vulnerabilities that were ignored by the black-boxqueries on a real-life existing database.

vulnerability scanners. The methodology is an &ffit
approximation mechanism to deal with string comstsa
However, the approach is only dedicated to ASP.NET
vulnerabilities.

5.4 Haixia and Zhihong's Database Security Testing
Scheme

In [7], Haixia and Zhihong propose a secure datlpasting
design for Web applications. They suggest a fewgsii
5.2 Thomas et al.’s Scheme firstly, detection of potential input points of SQhjection;

Thomas et al., in [4] suggest an automated preparedcondly, generation of test cases automaticdisn finally
statement generation algorithm to remove SQL Igect finding the database vulnerability by running testtcases to
Vulnerabilities (SQLIVS). They implement their reseh make a simulation attack to an application. Theppsed
work using four open source projects namely: (iY-tdast, methodology is shown to be efficient as it was dbldetect
(iiy I1Trust, (iii) WebGoat, and (iv) Roller. Basedn the the input points of SQL Injection exactly and oméias the
experimental results, their prepared statement eaeable authors expected. However, after analyzing the meheve
to successfully replace 94% of the SQLIVs in foygen find that the approach is not a complete solutiotrhther it
source projects. However, the experiment was cdeduc needs additional improvements in two main aspettts:
using only Java with a limited number of proje¢ience, the detection capability and the development of thackttrule
wide application of the same approach and tooMftferent library.
settings still remains an open research issuevistigate.

5.5 Roichman and Gudes’s Fine-grained Access Contro
5.3 Ruse et al.’s Approach Scheme

In [5], Ruse et al. propose a technique that usgésnatic In [8], Roichman and Gudes, in order to secure Web
test case generation to detect SQL Injection Valbnéities. application databases, suggest using a fine-graaeeess
The main idea behind this framework is based oatitrg a control to Web databases. They develop a new mdihedd
specific model that deals with SQL queries autoradlii. In on fine-grained access control mechanism. The adcethe
addition, the approach identifies the relationshiglatabase is supervised and monitored by the ludatabase
(dependency) between sub-queries. Based on thiistebie access control. This approach is efficient in thet that the
methodology is shown to be able to specificallyntifg the security and access control of the database isfeaad from
causal set and obtain 85% and 69% reduction regphlct the application layer to the database layer.

while experimenting on few sample examples. Moreoite

does not produce any false positive or false negatnd it is

able to detect the real cause of the injectionsdite of the

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

88
Vol. 5, No. 2, August 2013

Table 4.Various Schemes and SQL Injection Attacks.

Logically . Piggy-
SCHEMES Tautology | Incorrect el Szl Backed | Inference Alterngte
. Query | Procedure . Encodings
Queries Queries
AM IEIGE]SIA v v v < P P S
SQLrand
[13] Y X 4 X v v X
SQLDOM
[14] 4 4 v X v v v
WebSSARI[1
5,16] d 4 v v v v v
SQLGuard
[17] d 4 v X v v v
CANDID [18] v X X X X X X
SQLIPA[20] 4 X X X X X X
SQLCHECK
[21] d d v x v v v
DIWeDa[22] X X X X X v X
Automated
approaches v v v X v v X
[23]

Table 5. Various Approaches and Types of Tasks.

Approaches - Goals -
Detection Prevention

SQL-IDS [2] Yes Yes
AMNESIA [6] Yes Yes
SQLrand [13] Yes Yes
SQL DOM [14] Yes Yes
WebSSARI [15], [16] Yes Yes
SQLGuard [17] Yes No
CANDID [18] Yes No
SQLIPA [20] Yes No
SQLCHECK [21] Yes No
DIWeDa [22] Yes No

This is a solution of the vulnerability of the S@kssion
traceability. Besides that, it is a framework whiéh
applicable to almost all database applications.rdfbee, it
significantly decreases the risk of attacks atlihekend of
the database application.

5.6 Shin et al.’s Approach

In [19], Shin et al. suggest SQLUnitGen, a Statiatgsis-
based tool that automate testing for identifyingouin
manipulation vulnerabilities. They apply SQLUnitGéwol

which is compared with FindBugs, a static analystd. The
proposed mechanism is shown to be efficient (4&&lattest
cases) as regard to the fact that false positisosapletely
absent in the experiments. However for differergnseios,
false negatives at a small number were noticeddtition to
that, it was found that due to some shortcomingsose
significant rate of false negatives may occtor “other

5.7 SQL-IDS Approach

Kemalis and Tzouramanis in [2] suggest using a hove
specification-based methodology for the detectioh o
exploitations of SQL injection vulnerabilities. Tipeoposed
query-specific detection allowed the system to quenf
focused analysis at negligible computational ovadhe
without producing false positives or false negativehis new
approach is very efficient in practice; howeverratuires
more experiments and comparison with available atiete
methods under a shared and flexible benchmarking
environment.

6. SQL Injection Countermeasures: Detection
and Prevention Techniques

In the previous section, we have discussed varschemes

applications’. Hence, the authors talk about concentrating othat only deal with SQL Injection detection. Aftbaving

getting rid of those significant false negatives darther
improvement of the approach to cover input manigaa
vulnerabilities as their future works.

successfully detected any vulnerability or any kafdattack
that exploits the wvulnerability, other schemes doulle
applied to cure the system. In usual case, thexenwinly
two types of schemes; some are for prevention #met® are
for curing the system once it is under attack.drecof SQL
Injection, those schemes which work for preventBQL

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

Injection also do the curing of the system (or aaion) in
early stage. Hence, in plain term, we could cal $bhemes
‘countermeasures.

A strong countermeasure can remove or at leaskldbc
the available vulnerabilities in a system and titusould
protect it against various types of attacks thia @dvantage
of the vulnerabilities. Once a system is undercéftahe
curing mechanisms include some other techniques rigk
setting the system, re-organizing the various efgsi the
system, etc., which are not the topics of our curséudy. As
those mechanisms mainly deal with other aspectetviork
setting, database re-shuffling, re-organizing, ariizing

89
Vol. 5, No. 2, August 2013

efficient considering the performance obtained detense
against injected queries. However, this is a pafafoncept;
it still requires further testing and support frgnogrammers
in building tools using SQLrand targeting more DBM&k-
ends.

6.3 SQL DOM Scheme

SQL DOM (a set of classes that are strongly-typedat
database schema) framework is suggested by McG@lude
Kruger in [14]. They closely consider the existifigws
while accessing relational databases from the OQlbjet-
Oriented Programming) Language’s point of view. yhe

clean slate approach of re-installing the systen, (oMainly focus on identifying the obstacles in théetaction

application), the curing schemes are irrelevanbfarsurvey.
After our analysis of the available steps and dinide (after-
attack scenario), we found that they are more edlad the
managerial and administrative policies set fordhstem (or,
application) once the attacks are launched agé#irestd it
suffers from damage.

In this section, we list a number of countermeasuhat
could be employed before and during running théesyslt
should be noted that these schemes not only d&@tt
Injection but also take necessary measures so ttieat
vulnerabilities are not exploited by the rogue tidi So,
these schemes defer from the schemes mentionedein
previous section in the point that they do morentiast
detection of SQL Injection. Here, we also preseriefb
descriptions and analyze each scheme from theadritieed-

to-know’ angles. Table 3 shows a summary of so far known

countermeasures against SQL Injection.

Now, let us see what these schemes are actualiy.abioe
remaining texts in this section will analyze therioas
aspects covered in the different types of countasmess.

6.1 AMNESIA
In [6], Junjin proposes AMNESIA approach for tragiBQL

with the database via CLIs (Call Level InterfaceSQQL
DOM object model is the proposed solution to tadkiese
issues through building a secure environment @reation of
SQL statement through object manipulation)
communication. The qualitative evaluation of thggpeoach
has shown many advantages and benefits in termsriaft
detection during compile time, reliability, testityi and
maintainability. Though this mechanism is efficieihican be
further improved with more advanced and latest sumh as
CodeSmith [31].

6.4 SQLIA Prevention Using Stored Procedures

étored procedures are subroutines in the databhmd the
applications can make call to [15]. The preventiorthese
stored procedures is implemented by a combinatfcstatic
analysis and runtime analysis. The static analysisd for
commands identification is achieved through stored
procedure parser and the runtime analysis by using
SQLChecker for input identification. Huang et ploposed
in [16] a combination of static analysis and rumtim
monitoring to fortify the security of potential ndrabilities.
WebSSARI (Web application Security by Static Anadyand
Runtime Inspection) was used and implemented onoped

for

input flow and generating attack input, JCrasher foSource applications on SourceForge.net. The approas

generating test cases, and SQLInjectionGen fortifgamg

effective however it failed to remove the SQLIVsQS

hotspots. The experiment was conducted on two WwdBjection Vulnerabilities). It was only able to tlithe input

applications running on MySQL1 1 v5.0.21. Basedtlmee
attempts on the two databases, SQLInjectionGenfoasd
to give only two false negatives in one attempte phoposed
framework is efficient considering the fact thaeimphasizes
on attack input precision. Besides that, the attagkt is
properly matched with method arguments. Better #ibthe

previous advantages, the proposed approach haslse f

positives and counts small number of false negstivVée
only disadvantage of this approach is that it imesl a
number of steps using different tools.

6.2 SQLrand Scheme

In [13], SQLrand approach (approach using randoth&@L
query language, targeting a particul@ommon Gateway

Interface (CGI) application) is proposed by Boyd and

Keromytis. For the implementation, they used a prob
concept proxy server in between the Web serveer{fliand
the SQL server; they de-randomized queries receiread
the client and sent the request to the server. Tais
randomization framework has
portability (applied with wide range of DBMS) andcsirity
(database content highly protected). The proposbernse
has a good performance: 6.5 milliseconds is theirmax
latency overhead imposed on every query. Hences it

two main advantage

either white or black.

6.5 Parse Tree Validation Approach

Buehrer et al. [17] adopted the parse tree framewbhney
compared the parse tree of a particular statenteminéime
and its original statement. They stopped the eimtudf
statement unless there is a match. This methodesésd on
a student Web application using SQLGuard. Althotigh
approach is efficient, it has two major drawbadcdditional
overheard computation and listing of input onlya@ or
white).

6.6 Dynamic Candidate Evaluations Approach

In [18], Bisht et al. propose CANDID (CANdidate dvation
for Discovering Intent Dynamically). It is a Dynami
Candidate Evaluations method for automatic preeentf
SQL Injection attacks. This framework dynamicalktracts
the query structures from every SQL query locatidrich
are intended by the developer (programmer). Haheelves
ghe issue of manually modifying the applicatiorcteate the
prepared statements. Though this tool is showre tefficient
for some cases, it fails in many other cases. kamele, it is
inefficient when dealing with external functionsdamwhen

90
International Journal of Communication Networks &mfdrmation Security (IJCNIS) Vol. 5, No. 2, August 2013

applied at a wrong level. Besides that, sometiralso fails Web vulnerability scanning. Static analysis FindBug
due to the limited capability of the scheme. approach detects bugs on SQLIAs, gives warning vdren
. , SQL query is made of variable. However, for the Web
6.7 Ali et al."s Scheme o o
vulnerability scanning, it uses software agentsréawl, scans

Ali et al. [20] adopt the hash value approach tethler \vep applications, and detects the vulnerabiliieg b
improve the user authentication mechanism. Theythee pserving their behavior to the attacks.

user name and password hash values. SQLIPA (SQL)
Injection Protector for Authentication) prototypeasv 6-12 Comparisons
developed in order to test the framework. Thename and It would be difficult to give a clear verdict whicdtheme or
password hash values are created and calculatedhtihe approach is the best as each one has some prowefit®éor
for the first time the particular user accountrieated. Hash specific types of settings (i.e., systems). Henice,this
values are stored in the user account table. Thabgh section, we note down how various schemes worknag#ie
proposed framework was tested on few sample datshad identified SQL Injection attacks. Table 4 showdhart of the
an overhead of 1.3 ms, it requires further impromento schemes and their defense capabilities againstousri
reduce the overhead time. It also requires to beedewith SQLIAs. This table shows the comparative analy$ishe
larger amount of data. SQL Injections prevention techniques and the attgples.

6.8 SOLCHECKER Approach Though many approac_hes have been identified astiete

_)) ~or prevention techniques, only few of them were

Su and Wassermann [21] implement their algorithrthwi jmplemented in practicality. Hence, this comparissmot
SQLCHECK on a real time environment. It checks Whet pased on empirical experience but rather it is malygical
the input queries conform to the expected onesddfy the oy a|uation.
programmer. A secret key is applied for the usguuin |y Table 5, we note down the major approaches & de

delimitation [1]. The analysis of SQLCHECK shows n wjth SQL Injection and classify them based on tfatures.
false positives or false negatives. Also, the ogadhruntime

rate is very low and can be implemented directlymiany
other Web applications using different languages & very
efficient approach; however, once an attacker discothe Though many approaches and frameworks have been
key, it becomes vulnerable. Furthermore, it alsedseto be identified and implemented in many interactive Web
tested with online Web applications. applications, security still remains a major isS®QL
. . . Injection prevails as one of the top-10 vulnerdiesi and

2‘9 Detehctlng Intrusions in Web Databases (DIWeDa) threat to online businesses targeting the backemabdses.

pproac In this paper, we have reviewed the most populastieg

Roichman and Gudes [22] propose IDS (Intrusion &&e SQL Injections related issues.

Systems) for the backend databases. They use DIWeDa Key findings of this study could be summarized as:

7. Conclusion and Future Research Directions

prototype which acts at the session level rathen the SQL - Detailed survey report on various types of SQL

statement or transaction stage, to detect thesioing in Web Injection attacks, vulnerabilities, detection, and

applications. DIWeDa profiles the normal behaviof o prevention techniques

different roles in terms of the set of SQL queigstied in a - Assessment of techniques based on their performance

session, and then compares a session with thelepitofi and practicality

identify intrusions [22]. The proposed frameworleficient - Awareness information of the threat of SQL

and could identify SQL injections and business dogi Injections by providing recent and updated cases

violations too. However, with a threshold of 0.@fe¢ True and information

Positive Rate (TPR) was found to be 92.5% and thieeF - Exploration of “Web Application Security training

Positive Rate (FPR) was 5%. Hence, there is a greed of tutorials” to train security practitioners to deal

accuracy improvement (Increase of TPR and decreése with SQL Injection attacks

FPR). It also needs to be tested against new typ&¥eb The findings of this study could be used for peatén

attacks. testing purpose in order to protect data eithexcademic or
6.10 Manual Approaches industrial fields. Our research outcomes help:

- to measure the security level of Web Applications
using proposed tools

- to find/detect vulnerabilities of online applicai®

- to protect applications against using proposedrsecu
coding approaches

- to train security practitioners on SQL Injectiorings
the proposed tutorials

We believe that the work would be useful both foe t

Meidunjin [23] highlights the use of manual appiteg in
order to prevent SQLI input manipulation flaws. rranual
approaches, defensive programming and code review a
applied. In defensive programming: an input filtes
implemented to disallow users to input maliciougvkerds
or characters. This is achieved by using whites laat black
lists. As regards to the code review [24], it idoav cost

mechanism in_detecting bugs; however, it requirespd general readers of the topic as well as for thetji@ners.

knowledge on SQLIAS. As a future work, we would like to develop a counteasure
6.11 Automated Approaches that can efficiently tackle the innovative SQL lctien

Besides using manual approaches, Meidunjin [23p al@ttacks and fix as much vulnerability as possibieckers are
highlights the use of automated approaches. Theoaubtes [N reality very innovative and as the time is pagsby, new

that the two main schemes are: Static analysisBtigd and attacks are being launched that may need new wéys o
thinking about the solutions we currently have at lmands.

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

Acknowledgement

This project was supported by NDC Lab, KICT, IUM. [14]

References

[1] Halfond W. G., Viegas, J., and Orso, A, A15
Classification of SQL-Injection Attacks and[]

Countermeasures. In Proc. of the Intl. Symposium on
Secure Software Engineering, Mar. 2006.

Kemalis, K. and T. Tzouramanis. SQL-IDS: A
Specification-based Approach for SQL injection[16]
Detection. SAC'08. Fortaleza, Ceara, Brazil, ACM
2008, pp. 2153-2158.

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, &d

Tao, L., A Static Analysis Framework for Detecting
SQL Injection Vulnerabilities. Proc. 31st Annual
International Computer Software and Applicationéln
Conference 2007 (COMPSAC 2007), 24-27 July
(2007), pp. 87-96.

Thomas, S., Williams, L., and Xie, T., On automated
prepared statement generation to remove SQL injecti [18]
vulnerabilities. Information and Software Technglpg
Volume 51 Issue 3, March 2009, pp. 589-598.

Ruse, M., Sarkar, T., and Basu. S., Analysis &
Detection of SQL Injection Vulnerabilities via
Automatic Test Case Generation of Programs. Proc.
10th Annual International Symposium on Applicationilgl
and the Internet, 2010, pp. 31-37.

Junjin, M., An Approach for SQL Injection
Vulnerability Detection. Proc. of the 6th Interrcatal
Conference on Information Technology: New,
Generations, Las Vegas, Nevada, April 2009, ppl14
1414.

Haixia, Y. and Zhihong, N., A database securityings
scheme of web application. Proc. of 4th Internation
Conference on Computer Science & Education 206&1]
(ICCSE '09), 25-28 July 2009, pp. 953-955.

Roichman, A., Gudes, E., Fine-grained Access Cbntro
to Web Databases. Proceedings of 12th SACMA‘{ZZ]
Symposium, France 2007.

(2]

[3]

[4]

[5]

[6]

[7]

(8]

91
Vol. 5, No. 2, August 2013

Cryptography and Network Security (ACNS'04)
Conference, June (2004), pp. 292-302.

McClure, R.A. and Kruger, I.H., SQL DOM: compile
time checking of dynamic SQL statements. 27th
International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, pp. 88- 96.
Amirtahmasebi, K., Jalalinia, S.R., and Khadem,/S.
survey of SQL injection defense mechanisms.
International Conference for Internet Technologyl an
Secured Transactions (ICITST 2009), 9-12 Nov.
(2009), pp. 1-8.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., L&®;

T., and Kuo, S.-Y., Securing Web Application Code b
Static Analysis and Runtime Protection. Proc. othl3
International Conference on World Wide Web, New
York, NY 2004, pp. 40-52.

Buehrer, G., Weide, B.W., and Sivilotti, P.A.G.sihiy
Parse Tree Validation to Prevent SQL Injection
Attacks. Proc. of 5th International Workshop on
Software Engineering and Middleware, Lisbon,
Portugal 2005, pp. 106-113.

Bisht, P., Madhusudan, P., and VenkatakrishnaN,,V.
CANDID: Dynamic Candidate Evaluations for
Automatic Prevention of SQL Injection Attacks. ACM
Transactions on Information and System Security,
Volume 13 Issue 2, 2010, DOI:
10.1145/1698750.1698754.

Shin, Y., Williams, L., and Xie, T., SQLUnitGenest
Case Generation for SQL Injection Detection. North
Carolina State University, Raleigh Technical report
NCSU CSC TR 2006-21, 2006.

1[20] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An

Authentication Mechanism Against SQL Injection.
European Journal of Scientific Research, Vol. 38, N
4, 2009, pp. 604-611.

Su, Z. and Wassermann, G., The essence of command
injection attacks in web applications. In ACM
Symposium on Principles of Programming Languages
(POPL’2006), January 2006.

Roichman, A., and Gudes, E., DIWeDa - Detecting
Intrusions in Web Databases. Atluri, V. (ed.) DAS

9] To 10 2010-Al-Injection, available at: . .
o] htfp'//vvvwv owasp Org/indejx ohpFTop_ 10, 2010-AL- 2008. LNCS, vol. 5094, Springer, Heidelberg, 2008,
o j j ; - pp. 313-329.
Injection, last accessed 11 June, 2013. [23] Junjin, M., An Approach for SOL Injection

[10] Tajpour, A., Masrom, M., Heydari, M.Z., and Ibrahi
S., SQL injection detection and prevention tools
assessment. Proc. 3rd IEEE International Conference
Computer Science and Information Technolog¥24]
(ICCSIT’10), 9-11 July 2010, pp. 518-522.

[11] Tajpour, A., JorJor Zade Shooshtari, M., Evaluatid
SQL Injection Detection and Prevention Techniques.
Proc. of 2010 Second International Conference
Computational Intelligence, Communication System
and Networks (CICSyN’10), 28-30 July 2010, pp. 216-
221.

[12] Seixas, N., Fonseca, J., Vieira, M., and Maddita,
Looking at Web Security Vulnerabilities from the

5]

[26]

Vulnerability Detection. Sixth International Conéaice
on Information Technology: New Generations 2009
(ITNG '09), 27-29 April, 2009, pp. 1411-1414.

Baker, R.A., Code Reviews Enhance Software Quality
In Proceedings of the 19th international conferemce
Software engineering (ICSE'97), Boston, MA, USA,
1997, pp. 570-571.

The Open Web Application Security Project (OWASP).
available at:
http://mww.owasp.org/index.php/Main_Page, last
accessed 11 June, 2013.

Damn Vulnerable Web Application (DVWA), available

Programming Language Perspective: A Field Study. gglgttp:/lwww.dea.co.uk/, last accessed 11 June,
Proc. of 20th International Symposium on Softwar?zn Web. Security Dojo available at:

Reliability Engineering 2009 (ISSRE '09),16-19 Nov:
2009, pp. 129-135.

[13] Boyd S.W. and Keromytis, A.D., SQLrand: Preventing
SQL Injection Attacks. Proceedings of the 2nd Apgli

http://mww.mavensecurity.com/web_security _dojost la
accessed 11 June, 2013.

International Journal of Communication Networks &mfdrmation Security (IJCNIS)

[28] daffodil Call Center CRM, available at:
http://crm.daffodilsw.com/daffodilcrm/articles/cedinte
rcrm, last accessed 11 June, 2013.

[29] Luong, V., Intrusion Detection And Prevention ®yst
SQL-Injection Attacks. Master's Projects. Paper 16.
2010.

[30] Kindy, D.A. and Pathan, A.-S.K., A Survey on SQL
Injection: Vulnerabilities, Attacks, and Prevention
Techniques. (Poster) Proceedings of The 15th IEEE
Symposium on Consumer Electronics (IEEE ISCE
2011), June 14-17, Singapore 2011, pp. 468-471.

[31] CODESMITH, available at:
http://mww.codesmithtools.com/, last accessed e Ju
2013.

92
Vol. 5, No. 2, August 2013

