
80
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

A Detailed Survey on various aspects of SQL
Injection in Web Applications: Vulnerabilities,

Innovative Attacks and Remedies

Diallo Abdoulaye Kindy1,2, Al-Sakib Khan Pathan2

1CustomWare, Kuala Lumpur, Malaysia

2Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia
diallo14@gmail.com and sakib@iium.edu.my

Abstract: In today’s world, Web applications play a very
important role in individual life as well as in any country’s
development. Web applications have gone through a very rapid
growth in the recent years and their adoption is moving faster than
that was expected few years ago. Now-a-days, billions of
transactions are done online with the aid of different Web
applications. Though these applications are used by hundreds of
people, in many cases the security level is weak, which makes them
vulnerable to get compromised. In most of the scenarios, a user has
to be identified before any communication is established with the
backend database. An arbitrary user should not be allowed access to
the system without proof of valid credentials. However, a crafted
injection gives access to unauthorized users. This is mostly
accomplished via SQL Injection input. In spite of the development
of different approaches to prevent SQL injection, it still remains an
alarming threat to Web applications. In this paper, we present a
detailed survey on various types of SQL Injection vulnerabilities,
attacks, and their prevention techniques. Alongside presenting our
findings from the study, we also note down future expectations and
possible development of countermeasures against SQL Injection
attacks.

Keywords: Attack, Injection, SQL, Vulnerability, Web.

1. Introduction

In the recent years, the World Wide Web (WWW) has
witnessed a staggering growth of many online Web
applications which have been developed for meeting various
purposes. Now-a-days, almost everyone in touch with
‘computer technology’ is somehow connected online. To
serve this huge number of users, great volumes of data are
stored in Web application databases in different parts of the
globe. From time to time, the users need to interact with the
backend databases via the user interfaces for various tasks
such as: updating data, making queries, extracting data, and
so forth. For all these operations, design interface plays a
crucial role, the quality of which has a great impact on the
security of the stored data in the database. A less secure Web
application design may allow crafted injection and malicious
update on the backend database. This trend can cause lots of
damages and thefts of trusted users’ sensitive data by
unauthorized users. In the worst case, the attacker may gain
full control over the Web application and totally destroy or
damage the system. This is successfully achieved, in general,
via SQL injection attacks on the online Web application
database. In this paper, we have reviewed most of the well-
known and new SQL Injection attacks, vulnerabilities and

prevention techniques. We present this topic in a way that the
work could be beneficial both for the general readers and for
the researchers in the area for their future research works.

SQL Injection is a type of injection or attack in a Web
application, in which the attacker provides Structured Query
Language (SQL) code to a user input box of a Web form to
gain unauthorized and unlimited access. The attacker’s input
is transmitted into an SQL query in such a way that it forms
an SQL code [1], [10]. In fact, SQL Injection is categorized
as the top-10 2010 Web application vulnerabilities
experienced by Web applications according to OWASP
(Open Web Application Security Project) [9].

SQL Injection Vulnerabilities (SQLIVs) are one of the
open doors for hackers to explore. Hence, they constitute a
severe threat for Web application contents. The key root and
basis of SQLIVs is quite simple and well understood:
insufficient validation of user input [1]. To mitigate these
vulnerabilities, many prevention techniques have been
suggested such as manual approach, automated approach;
secure coding practices, static analysis, using prepared
statements, and so forth. Though, proposed approaches have
achieved their goals to some extent, SQL Injection
Vulnerabilities in Web applications remain as a major
concern among application developers.

Relating to the above mentioned texts, the key objective of
this work is to present a detailed survey on various types of
SQL Injection vulnerabilities, attacks, and their prevention
techniques. Alongside presenting our findings from the study,
we also note down future expectations and possible
development of countermeasures against SQL Injection
attacks. The key purpose of this study is to address the issue
from all necessary angles so that the work could be used as a
reference work by the researchers and practitioners. Till
today, a comprehensive survey on this topic is missing;
hence, we believe our work could fill the void.

Though there are some previous works on SQL Injections,
they have mainly the following limitations:

- Not up-to-date: the growth of e-commerce is almost
parallel to the alarming threats targeting Web applications
using SQL Injections. Hence, the relevance and accuracy of
some previous publications are now questionable. The more
the time passes by, the more kinds of attacks evolve and put
less confidence on the previously noted information.

81
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Figure 1. Normal user input process in a Web application.

- Lack of practice: In almost all the previous works, there
is a critical lack of a discussion about the Web application
security training tutorials used in practice. Sometimes, there
is huge gap between theory and practice. Hence, in our work
we mention the tools that should be known for practical use
and tackling SQL injection attacks. The information about
these tools is missing in most, if not all of the previous works
we have analyzed.

After this initial information, the rest of the paper is
organized as follows: in Section 2, we provide SQL Injection
background and categorize the vulnerabilities and attacks.
Section 3 presents an in-depth look at the most common SQL
Injection attacks. Section 4 notes down the tools and tutorials
that we have used for our work, Section 5 talks about various
approaches for detecting SQL Injection attacks, Section 6
notes down the available countermeasures to tackle various
SQL Injection attacks and a comparative analysis of various
attacks and schemes, and finally, Section 7 concludes the

paper noting the contribution of this work alongside
mentioning our future research objectives.

2. SQL Injection: The ‘Need-to-Know’ Aspects

2.1 What is SQL?

SQL (pronounced as “S-Q-L” or "sequel") stands for
Structured Query Language. It is the high level language used
in various relational Database Management Systems
(DBMS). SQL was originally developed in the early 1970’s
by Edgar F. Codd at IBM. It was commercial and the most-
widely used language for all relational databases. This
language is a declarative computer language which has
elements that include clauses, expressions, predicates,
queries, and statements. It allows the users mainly, (i) data
insertion, (ii) data updating, (iii) query, (iv) deletion, and
many more features (thus gives the user the power of
manipulating databases) [6], [7].

82
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Figure 2. Malicious input process in a Web application.

2.2 SQL Injection Vulnerability versus SQL Injection
Attack

Vulnerability in any system is defined as a bug, loophole,
weakness or flaw existing in the system that can be exploited
by an unauthorized user in order to gain unlimited access to
the stored data. Attack generally means an illegal access,
gained through well crafted mechanisms, to an application or
system. An SQL Injection Attack (SQLIA) is a type of attack
[30] whereby an attacker (a crafted user) adds malicious
keywords or operators into an SQL query (e.g., SQL
malicious code statements), then injects it to a user input box
of a Web application. This allows the attacker to have illegal
and unrestricted access to the data stored at the backend
database. Figure 1 shows the normal user input process in a
Web application, which is self-explanatory. Figure 2 shows
an example how a malicious input could be processed in a
Web application. In this case, the malicious input is the
carefully formulated SQL query which passes through the
system’s verification method. To explore this area more, in
this paper, we investigate both the SQL Injection
vulnerabilities and SQL Injection attacks.

2.3 Why is SQL Injection a Threat?

Injecting a Web application is the synonym of having illegal
access to the data stored in the database. The data sometimes
could be confidential and of high value like the financial
secrets of a bank or list of financial transactions or secret

information of some kind of information system. An
unauthorized access to this data by a crafted user can pose
threat to their confidentiality, integrity, and authority. As a
result, the system could bear heavy loss in giving proper
services to its users or it may even face complete destruction.
Sometimes such type of collapse of a system can threaten the
existence of a company or a bank or an industry. If it happens
against the information system of a hospital, the private
information of the patients may be leaked out which could
threaten their reputation or may become a case of
defamation. Attackers may even use such type of attack to get
confidential information that is related to the national
security of a country. Hence, SQL Injection could be very
dangerous in many cases depending on the platform where
the attack is launched and where it gets success in injecting
rogue users to the target system.

2.4 Types of Vulnerabilities in Web Programming
Languages

There could be various types of vulnerabilities that could be
exploited for SQL Injection. In this section, we present the
most common security vulnerabilities found in Web
programming languages [12] through which SQL Injection
attacks are usually launched. We show the major types of
vulnerabilities at a glance in Table 1.

83
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 1. Types of Vulnerabilities at a glance

Vulnerability
Types

Basic Idea

Type I
Lack of clear distinction between data types
accepted as input in the programming language
used for the Web application development.

Type II
Delay of operation analysis till the runtime
phase where the current variables are considered
rather than the source code expressions.

Type III
Weak concern of type specification in the
design: a number can be used as a string or vice-
versa.

Type IV
The validation of the user input is not well
defined or sanitized. Inputs are not checked
correctly.

2.5 Types of SQL Injection Attacks (SQLIAs): Past and
Present

It is not an easy task to find out and categorize all types of
SQLIAs. The same attack may be called with different names
in different cases depending on the system scenario. In this
sub-section, we present all the commonly known SQL
Injection attacks [1], [11] that so far have been discovered
along with newly invented innovative attacks. We use the
terminologies as deem to be appropriate. Table 2 shows the
types of SQL Injection attacks with brief descriptions.

3. An In-Depth Look At the Most common
SQL Injection Attacks

Among various types of SQLI attacks, some are frequently
used by the attackers. It is imperative to know the commonly
used major attacks among all available attacks. Hence, in this
section, we present an in-depth look at some of the most
common SQL Injection attacks. We explain each of these
major attacks with simple examples, wherever appropriate.

3.1 Tautology

SQL injection codes are injected into one or more
conditional statements so that they are always evaluated to be
true. Under this technique, we may have the following types
and scenarios of attacks:

3.1.1 String SQL Injection

This type of injection is also referred to as AND/OR Attack
[14], [15]. The attacker inputs SQL tokens or strings to a
conditional query statement that always evaluates to a true
statement. The interesting issue with this type of attack is that
instead of returning only one row in a table, if it is successful,
it causes all of the rows in the database table targeted by the
query to be returned. The goal behind this type of attack may
include the following: (a) Bypassing authentication, (b)
Identifying parameters that can be injected, and (c)
Extraction of data [1].

 Scenario

• Normal Statement: SELECT * FROM users
WHERE name='Lucia01
Input: Lucia01 Output: Lucia's Rows
only

• Injected Statement: SELECT * FROM
users WHERE name= 'Lucia01’ OR '1'
='1'
 Input: 'Lucia01' OR '1' ='1'
Output: this will return rows for
Lucia01 OR wherever one equals to one
which is true for all rows. Hence, all
rows will be returned.

3.1.2 Numeric SQL Injection

This type of Injection is quasi-similar to the above discussed.
The main difference is that; here numeric values are used
instead of strings. Therefore, the attacker would input
numeric values to a conditional query statement that would
always evaluate to a true statement.

 Scenario

• Normal Statement: SELECT * FROM users
WHERE id= '101'
Input: 101 Output: id 101's Rows only.

• Injected Statement: SELECT * FROM
users WHERE name= '101' OR '1' ='1'.
Input: '101' OR '1' ='1'
Output: this will return rows for
'101'id or wherever one equals to one
(ALL ROWS)
Note : the crafted user can be more
specific by adding ORDER BY clause to
get exactly what he wants on time. The
malicious input will look like: 101 OR
1=1 ORDER BY salary desc;

3.1.3 Comments Attack

This type of attack takes advantage of the inline commenting
allowed by SQL [29] - the malicious code and comments
whatever comes after the “--” in the WHERE clause. The
point is that everything after the comment characters will be
ignored. Comments Attack can be combined with either
String or Numeric SQL Injection so that it performs as a
tautology which always evaluates to a true statement.

 Scenario

• User Input: ‘user1 OR ‘1’ =’1 —‘.
• Generated SQL Query : SELECT username,

password FROM clients WHERE username =
‘user1 OR ‘1’ =’1 —‘ AND password =
‘whatever’ .

In this case, not only the WHERE clause is transformed

into a tautology by the (OR 1=1) but also the password part
is also completely ignored, hence only the username part will
be checked [1], [29].

 3.2 Inference

An attacker derives logical conclusions from the answer to
a true/false question concerning the database. Through a
successful inference, crafted users change the behavior of the
database.

84
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 2. Types of SQLIAs at a glance.

Types of Attack Working Method

Tautologies
SQL injection codes are injected into one or more conditional statements so that
they are always evaluated to be true.

Logically Incorrect
Queries

Using error messages rejected by the database to find useful data facilitating
injection of the backend database.

Union Query
Injected query is joined with a safe query using the keyword UNION in order to get
information related to other tables from the application.

Stored Procedure
Many databases have built-in stored procedures. The attacker executes these built-
in functions using malicious SQL Injection codes.

Piggy-Backed Queries Additional malicious queries are inserted into an original injected query.

Inference
- Blind

Injection
- Timing

Attacks

An attacker derives logical conclusions from the answer to a true/false question
concerning the database.

- Information is collected by inferring from the replies of the page after
questioning the server true/false questions.

- An attacker collects information by observing the response time
(behavior) of the database.

Alternate Encodings
It aims to avoid being identified by secure defensive coding and automated
prevention mechanisms. It is usually combined with other attack techniques.

3.2.1 Blind SQL Injection

In this type of attack, useful information for exploiting the
backend database is collected by inferring from the replies of
the page after questioning the server some true/false
questions. It is very similar to a normal SQL Injection [14],
[15]. However, when an attacker attempts to exploit an
application, rather than getting a useful error message, they
get a generic page specified by the developer instead. This
makes exploiting a potential SQL Injection attack more
difficult but not impossible. An attacker can still get access to
sensitive data by asking a series of True and False questions
through SQL statements.

 Scenario

http://victim/listproducts.asp?cat=boo
ks
SELECT * from PRODUCTS WHERE
category='books'
http://victim/listproducts.asp?cat=boo
ks' or '1'='1.
SELECT * from PRODUCTS WHERE
category='books' or '1'='1'.

3.2.2 Timing Attacks

An attacker collects information by observing the response
time (behavior) of the database. Here the main concern is to
observe the response time that will help the attacker to decide
wisely on the appropriate injection approach.

3.2.3 Database Backdoors

Databases are used not only for data storage but also to keep
malicious activity like a trigger. In this case, an attacker can
set a trigger in order to get the user input and get it directed
to his or her e-mail, for example.

 Scenario

101; CREATE TRIGGER myBackDoor BEFORE
INSERT ON employee FOR EACH ROW BEGIN
UPDATE employee SET
email='hacker@me.com'WHERE userid =
NEW.userid.

3.2.4 Command SQL Injection

The purpose of this injection is to inject and execute
commands specified by the hacker in the vulnerable
application. The application executing the unwanted system
commands is like a pseudo system-shell controlled by the
attacker. Lack of correct input data validation (forms,
cookies, HTTP headers, etc.) is the main vulnerability
exploited by attackers for a successful injection. It differs
from code injection in the sense that the attacker adds his
own code to the existing code. Hence, the default
functionalities of the application are extended without
executing system commands. An OS (Operating System)
command injection attack occurs when an attacker attempts
to execute system level commands through a vulnerable
application. Applications are considered vulnerable to OS
command injection attack if they utilize user input in a
system level command.

85
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Figure 3. OWASP environment/interface.

Figure 4. DVWA environment.

4. Web Application Security Training Tutorials
Used

In this section, we discuss some existing Web Application
security tutorials that we have used either online or offline
for analysing various mechanisms. These tutorials
purposefully contain vulnerabilities for the user to discover
and exploit.

OWASP - The Open Web Application Security Project
(OWASP) is a 501c3 not-for-profit worldwide charitable
organization focused on improving the security of application
software [25]. Tutorials are written in Java. This tutorial
covers the 10 most common Web application vulnerabilities
such as (i) Injection flaws, (ii) Cross-Site Scripting (XSS),
(iii) Broken Authentication and Session Management, (iv)
Insecure Direct Object References, (v) Cross-Site Request
Forgery (CSRF), (vi) Security Misconfiguration, (vii)
Insecure Cryptographic Storage, (viii) Failure to Restrict
URL Access, (ix) Insufficient Transport Layer Protection,
and (x) Invalidated Redirects and Forwards. In addition, they
provide hints, prevention, solution, and show java options.
Every year they present the Top-10 Web Application
vulnerabilities. The source code of the project and LiveCD
are free of charge and accessible to almost every user.
Though it provides comprehensive practices, the explanation

of the topics is lacking and is left to the user to learn. It
focuses more on hands-on part rather than the teaching side.
Because of being completely Java-oriented, it is not
concerned about applications built using other languages
such as PHP or RoR (Ruby on Rails). Figure 3 shows an
OWASP environment.

DVWA - Damn Vulnerable Web Application (DVWA)
[26] is another practice tool built using PHP/MySQL. It is an
aid for security professionals and Web developers to test and
try out their skills and tools in a legal practice environment.
Besides that, it is a handy approach to train/teach users (i.e.,
students, teachers, researchers, security professionals) on
Secure Web Development. The source code and LiveCD are
made available for free. This tutorial covers the following
topics: Brute Force, Command Execution, CSRF, File
Inclusion, SQL Injection (Blind), Upload, XSS reflected, and
XSS stored. Compared to OWASP, it is less comprehensive
and covers only few topics. In this tutorial, there is a lack of
adequate information not only of direct topic-related
discussions but also of guidelines, hints, and solutions. Users
can only find information on topics through some provided
Internet links/sources. Figure 4 shows the DVWA
environment.

86
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Figure 5. Web Security Dojo environment.

Figure 6. daffodil lessons.

Web Security Dojo - This is a “free open-source self-

contained training environment for Web Application Security
penetration testing. Tools + Targets = Dojo” [27]. The
VmWare image is provided for free. Users can download and
install it in a virtual machine at their own pace with full
documentation. Some default targets provided are: DVWA
(Damn Vulnerable Web App), REST Demos, and JSON
demos. They also provide WebGoat, Hackme Casino
vulnerable application, Insecure Web App and some tools
like burp suite. It is a very efficient environment for practice;
however, it seems to be a bit advanced tool for a security-
practice beginner. The environment of Web Security Dojo is
shown in Figure 5.

Daffodil – This is also an open source web application
project designed for learning purpose [28]. It is similar to
OWASP and DVWA applications. It contains both exercises
and solutions for the selected Web application
vulnerabilities. This tutorial also lacks proper topic
discussions. The user has to look for other sources to find out
more information on selected practices. It should be made
more user-friendly so that beginners (i.e., the naive
practitioners) can work without much hassle of finding
information from here and there. Figure 6 shows a snapshot
of Daffodil Lessons.

We have discussed all these training tutorials here for
better understanding of the topic by the readers. In fact, for
our work, we have used all these tutorials side-by-side our

literature survey, problem definitions, possible solutions,
analysis, and comparisons of various approaches.

5. Detecting SQL Injection

In order to protect a Web application from SQL Injection
attacks, there are two major concerns. Firstly, there is a great
need of a mechanism to detect and exactly identify SQL
Injection attacks. Secondly, knowledge of SQL Injection
Vulnerabilities (SQLIVs) is a must for securing a Web
application. So far, many frameworks have been used and/or
suggested to detect SQLIVs in Web applications. Here, we
mention the prominent solutions and their working methods
in brief to let the readers know about the core ideas behind
each work.

5.1 SAFELI

Fu et al., in [3] propose a Static Analysis Framework in order
to detect SQL Injection Vulnerabilities. SAFELI framework
aims at identifying the SQL Injection attacks during the
compile-time. This static analysis tool has two main
advantages. Firstly, it does a White-box Static Analysis and
secondly, it uses a Hybrid-Constraint Solver. For the White-
box Static Analysis, the proposed approach considers the
byte-code and deals mainly with strings. For the Hybrid-
Constraint Solver, the method implements an efficient string
analysis tool which is able to deal with Boolean, integer and
string variables.

87
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 3. SQL Injection Countermeasures.

Countermeasure Overview
SQL-IDS [2] A specification based approach to detect malicious intrusions

Prepared Statements [4]
It is a fixed query “template” which is pre-defined, providing type–
specific placeholders for input data

AMNESIA [6]
This scheme identifies illegal queries before their execution.
Dynamically-generated queries are compared with the statically-built
model using a runtime monitoring

SQLrand [13] A strong random integer is inserted in the SQL keywords.

SQL DOM [14]
A set of classes that are strongly-typed to a database schema are used
to generate SQL statements instead of string manipulation

SQLIA prevention using Stored
Procedures [15], [16]

Combination between static analysis and runtime monitoring

SQLGuard [17]
The parse trees of the SQL statement before and after user input are
compared at a run time. The Web script has to be modified

CANDID [18]
Programmer-intended query structures are guessed based upon
evaluation runs over non-attacking candidate inputs

SQLIPA [20]
Using user name and password hash values, to improve the security of
the authentication process

SQLCHECK [21]
A key is inserted at both beginning and end of user’s input. Invalid
syntactic forms are the attacks. The key strength is a major issue

DIWeDa [22] To detect various types of intrusions in Web Databases applications
Manual approaches [23] Defensive programming and Code review mechanisms are applied

Automated approaches [23]
Static analysis FindBugs and Web vulnerability scanning frameworks
are implemented

The implementation of this framework was done on
ASP.NET Web applications and it was able to detect
vulnerabilities that were ignored by the black-box
vulnerability scanners. The methodology is an efficient
approximation mechanism to deal with string constraints.
However, the approach is only dedicated to ASP.NET
vulnerabilities.

5.2 Thomas et al.’s Scheme

Thomas et al., in [4] suggest an automated prepared
statement generation algorithm to remove SQL Injection
Vulnerabilities (SQLIVs). They implement their research
work using four open source projects namely: (i) Net-trust,
(ii) ITrust, (iii) WebGoat, and (iv) Roller. Based on the
experimental results, their prepared statement code was able
to successfully replace 94% of the SQLIVs in four open
source projects. However, the experiment was conducted
using only Java with a limited number of projects. Hence, the
wide application of the same approach and tool for different
settings still remains an open research issue to investigate.

5.3 Ruse et al.’s Approach

In [5], Ruse et al. propose a technique that uses automatic
test case generation to detect SQL Injection Vulnerabilities.
The main idea behind this framework is based on creating a
specific model that deals with SQL queries automatically. In
addition, the approach identifies the relationship
(dependency) between sub-queries. Based on the results, the
methodology is shown to be able to specifically identify the
causal set and obtain 85% and 69% reduction respectively
while experimenting on few sample examples. Moreover, it
does not produce any false positive or false negative and it is
able to detect the real cause of the injection. In spite of the

claimed and apparent efficiency of the technique, the major
drawback of the work is that it was not tested with real
queries on a real-life existing database.

5.4 Haixia and Zhihong’s Database Security Testing
Scheme

In [7], Haixia and Zhihong propose a secure database testing
design for Web applications. They suggest a few things;
firstly, detection of potential input points of SQL Injection;
secondly, generation of test cases automatically, then finally
finding the database vulnerability by running the test cases to
make a simulation attack to an application. The proposed
methodology is shown to be efficient as it was able to detect
the input points of SQL Injection exactly and on time as the
authors expected. However, after analyzing the scheme, we
find that the approach is not a complete solution but rather it
needs additional improvements in two main aspects: the
detection capability and the development of the attack rule
library.

5.5 Roichman and Gudes’s Fine-grained Access Control
Scheme

In [8], Roichman and Gudes, in order to secure Web
application databases, suggest using a fine-grained access
control to Web databases. They develop a new method based
on fine-grained access control mechanism. The access to the
database is supervised and monitored by the built-in database
access control. This approach is efficient in the fact that the
security and access control of the database is transferred from
the application layer to the database layer.

88
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Table 4. Various Schemes and SQL Injection Attacks.

SCHEMES Tautology
Logically
Incorrect
Queries

Union
Query

Stored
Procedure

Piggy-
Backed
Queries

Inference
Alternate
Encodings

AMNESIA
[6]

✓ ✓ ✓ x ✓ ✓ ✓

SQLrand
[13]

✓ x ✓ x ✓ ✓ x

SQLDOM
[14]

✓ ✓ ✓ x ✓ ✓ ✓

WebSSARI[1
5,16]

✓ ✓ ✓ ✓ ✓ ✓ ✓

SQLGuard
[17]

✓ ✓ ✓ x ✓ ✓ ✓

CANDID [18] ✓ x x x x x x
SQLIPA[20] ✓ x x x x x x
SQLCHECK

[21]
✓ ✓ ✓ x ✓ ✓ ✓

DIWeDa[22] x x x x x ✓ x
Automated
approaches

[23]
✓ ✓ ✓ x ✓ ✓ x

Table 5. Various Approaches and Types of Tasks.

Approaches
Goals

Detection Prevention
SQL-IDS [2] Yes Yes
AMNESIA [6] Yes Yes
SQLrand [13] Yes Yes
SQL DOM [14] Yes Yes
WebSSARI [15], [16] Yes Yes
SQLGuard [17] Yes No
CANDID [18] Yes No
SQLIPA [20] Yes No
SQLCHECK [21] Yes No
DIWeDa [22] Yes No

This is a solution of the vulnerability of the SQL session
traceability. Besides that, it is a framework which is
applicable to almost all database applications. Therefore, it
significantly decreases the risk of attacks at the backend of
the database application.

5.6 Shin et al.’s Approach

In [19], Shin et al. suggest SQLUnitGen, a Static-analysis-
based tool that automate testing for identifying input
manipulation vulnerabilities. They apply SQLUnitGen tool
which is compared with FindBugs, a static analysis tool. The
proposed mechanism is shown to be efficient (483 attack test
cases) as regard to the fact that false positive was completely
absent in the experiments. However for different scenarios,
false negatives at a small number were noticed. In addition to
that, it was found that due to some shortcomings, a more
significant rate of false negatives may occur “for other
applications”. Hence, the authors talk about concentrating on
getting rid of those significant false negatives and further
improvement of the approach to cover input manipulation
vulnerabilities as their future works.

5.7 SQL-IDS Approach

Kemalis and Tzouramanis in [2] suggest using a novel
specification-based methodology for the detection of
exploitations of SQL injection vulnerabilities. The proposed
query-specific detection allowed the system to perform
focused analysis at negligible computational overhead
without producing false positives or false negatives. This new
approach is very efficient in practice; however, it requires
more experiments and comparison with available detection
methods under a shared and flexible benchmarking
environment.

6. SQL Injection Countermeasures: Detection
and Prevention Techniques

In the previous section, we have discussed various schemes
that only deal with SQL Injection detection. After having
successfully detected any vulnerability or any kind of attack
that exploits the vulnerability, other schemes could be
applied to cure the system. In usual case, there are mainly
two types of schemes; some are for prevention and others are
for curing the system once it is under attack. In case of SQL
Injection, those schemes which work for preventing SQL

89
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Injection also do the curing of the system (or application) in
early stage. Hence, in plain term, we could call the schemes
‘countermeasures’.

A strong countermeasure can remove or at least block all
the available vulnerabilities in a system and thus it could
protect it against various types of attacks that take advantage
of the vulnerabilities. Once a system is under attack, the
curing mechanisms include some other techniques like re-
setting the system, re-organizing the various elements in the
system, etc., which are not the topics of our current study. As
those mechanisms mainly deal with other aspects of network
setting, database re-shuffling, re-organizing, and utilizing
clean slate approach of re-installing the system (or,
application), the curing schemes are irrelevant for our survey.
After our analysis of the available steps and guidelines (after-
attack scenario), we found that they are more related to the
managerial and administrative policies set for the system (or,
application) once the attacks are launched against it and it
suffers from damage.

In this section, we list a number of countermeasures that
could be employed before and during running the system. It
should be noted that these schemes not only detect SQL
Injection but also take necessary measures so that the
vulnerabilities are not exploited by the rogue entities. So,
these schemes defer from the schemes mentioned in the
previous section in the point that they do more than just
detection of SQL Injection. Here, we also present brief
descriptions and analyze each scheme from the critical ‘need-
to-know’ angles. Table 3 shows a summary of so far known
countermeasures against SQL Injection.

Now, let us see what these schemes are actually about. The
remaining texts in this section will analyze the various
aspects covered in the different types of countermeasures.

6.1 AMNESIA

In [6], Junjin proposes AMNESIA approach for tracing SQL
input flow and generating attack input, JCrasher for
generating test cases, and SQLInjectionGen for identifying
hotspots. The experiment was conducted on two Web
applications running on MySQL1 1 v5.0.21. Based on three
attempts on the two databases, SQLInjectionGen was found
to give only two false negatives in one attempt. The proposed
framework is efficient considering the fact that it emphasizes
on attack input precision. Besides that, the attack input is
properly matched with method arguments. Better than all the
previous advantages, the proposed approach has no false
positives and counts small number of false negatives. The
only disadvantage of this approach is that it involves a
number of steps using different tools.

6.2 SQLrand Scheme

In [13], SQLrand approach (approach using randomized SQL
query language, targeting a particular Common Gateway
Interface (CGI) application) is proposed by Boyd and
Keromytis. For the implementation, they used a proof of
concept proxy server in between the Web server (client) and
the SQL server; they de-randomized queries received from
the client and sent the request to the server. This de-
randomization framework has two main advantages:
portability (applied with wide range of DBMS) and security
(database content highly protected). The proposed scheme
has a good performance: 6.5 milliseconds is the maximum
latency overhead imposed on every query. Hence, it is

efficient considering the performance obtained and defense
against injected queries. However, this is a proof of concept;
it still requires further testing and support from programmers
in building tools using SQLrand targeting more DBMS back-
ends.

6.3 SQL DOM Scheme

SQL DOM (a set of classes that are strongly-typed to a
database schema) framework is suggested by McClure and
Krüger in [14]. They closely consider the existing flaws
while accessing relational databases from the OOP (Object-
Oriented Programming) Language’s point of view. They
mainly focus on identifying the obstacles in the interaction
with the database via CLIs (Call Level Interfaces). SQL
DOM object model is the proposed solution to tackle these
issues through building a secure environment (i.e., creation of
SQL statement through object manipulation) for
communication. The qualitative evaluation of this approach
has shown many advantages and benefits in terms of: error
detection during compile time, reliability, testability, and
maintainability. Though this mechanism is efficient, it can be
further improved with more advanced and latest tool such as
CodeSmith [31].

6.4 SQLIA Prevention Using Stored Procedures

Stored procedures are subroutines in the database which the
applications can make call to [15]. The prevention in these
stored procedures is implemented by a combination of static
analysis and runtime analysis. The static analysis used for
commands identification is achieved through stored
procedure parser and the runtime analysis by using a
SQLChecker for input identification. Huang et al. proposed
in [16] a combination of static analysis and runtime
monitoring to fortify the security of potential vulnerabilities.
WebSSARI (Web application Security by Static Analysis and
Runtime Inspection) was used and implemented on 230 open
source applications on SourceForge.net. The approach was
effective however it failed to remove the SQLIVs (SQL
Injection Vulnerabilities). It was only able to list the input
either white or black.

6.5 Parse Tree Validation Approach

Buehrer et al. [17] adopted the parse tree framework. They
compared the parse tree of a particular statement at runtime
and its original statement. They stopped the execution of
statement unless there is a match. This method was tested on
a student Web application using SQLGuard. Although this
approach is efficient, it has two major drawbacks: additional
overheard computation and listing of input only (black or
white).

6.6 Dynamic Candidate Evaluations Approach

In [18], Bisht et al. propose CANDID (CANdidate evaluation
for Discovering Intent Dynamically). It is a Dynamic
Candidate Evaluations method for automatic prevention of
SQL Injection attacks. This framework dynamically extracts
the query structures from every SQL query location which
are intended by the developer (programmer). Hence, it solves
the issue of manually modifying the application to create the
prepared statements. Though this tool is shown to be efficient
for some cases, it fails in many other cases. For example, it is
inefficient when dealing with external functions and when

90
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

applied at a wrong level. Besides that, sometimes it also fails
due to the limited capability of the scheme.

6.7 Ali et al.’s Scheme

Ali et al. [20] adopt the hash value approach to further
improve the user authentication mechanism. They use the
user name and password hash values. SQLIPA (SQL
Injection Protector for Authentication) prototype was
developed in order to test the framework. The username and
password hash values are created and calculated at runtime
for the first time the particular user account is created. Hash
values are stored in the user account table. Though the
proposed framework was tested on few sample data and had
an overhead of 1.3 ms, it requires further improvement to
reduce the overhead time. It also requires to be tested with
larger amount of data.

6.8 SQLCHECKER Approach

Su and Wassermann [21] implement their algorithm with
SQLCHECK on a real time environment. It checks whether
the input queries conform to the expected ones defined by the
programmer. A secret key is applied for the user input
delimitation [1]. The analysis of SQLCHECK shows no
false positives or false negatives. Also, the overhead runtime
rate is very low and can be implemented directly in many
other Web applications using different languages. It is a very
efficient approach; however, once an attacker discovers the
key, it becomes vulnerable. Furthermore, it also needs to be
tested with online Web applications.

6.9 Detecting Intrusions in Web Databases (DIWeDa)
Approach

Roichman and Gudes [22] propose IDS (Intrusion Detection
Systems) for the backend databases. They use DIWeDa, a
prototype which acts at the session level rather than the SQL
statement or transaction stage, to detect the intrusions in Web
applications. DIWeDa profiles the normal behavior of
different roles in terms of the set of SQL queries issued in a
session, and then compares a session with the profile to
identify intrusions [22]. The proposed framework is efficient
and could identify SQL injections and business logic
violations too. However, with a threshold of 0.07, the True
Positive Rate (TPR) was found to be 92.5% and the False
Positive Rate (FPR) was 5%. Hence, there is a great need of
accuracy improvement (Increase of TPR and decrease of
FPR). It also needs to be tested against new types of Web
attacks.

6.10 Manual Approaches

MeiJunjin [23] highlights the use of manual approaches in
order to prevent SQLI input manipulation flaws. In manual
approaches, defensive programming and code review are
applied. In defensive programming: an input filter is
implemented to disallow users to input malicious keywords
or characters. This is achieved by using white lists or black
lists. As regards to the code review [24], it is a low cost
mechanism in detecting bugs; however, it requires deep
knowledge on SQLIAs.

6.11 Automated Approaches

Besides using manual approaches, MeiJunjin [23] also
highlights the use of automated approaches. The author notes
that the two main schemes are: Static analysis FindBugs and

Web vulnerability scanning. Static analysis FindBugs
approach detects bugs on SQLIAs, gives warning when an
SQL query is made of variable. However, for the Web
vulnerability scanning, it uses software agents to crawl, scans
Web applications, and detects the vulnerabilities by
observing their behavior to the attacks.

6.12 Comparisons

It would be difficult to give a clear verdict which scheme or
approach is the best as each one has some proven benefits for
specific types of settings (i.e., systems). Hence, in this
section, we note down how various schemes work against the
identified SQL Injection attacks. Table 4 shows a chart of the
schemes and their defense capabilities against various
SQLIAs. This table shows the comparative analysis of the
SQL Injections prevention techniques and the attack types.
Though many approaches have been identified as detection
or prevention techniques, only few of them were
implemented in practicality. Hence, this comparison is not
based on empirical experience but rather it is an analytical
evaluation.

In Table 5, we note down the major approaches to deal
with SQL Injection and classify them based on their features.

7. Conclusion and Future Research Directions

Though many approaches and frameworks have been
identified and implemented in many interactive Web
applications, security still remains a major issue. SQL
Injection prevails as one of the top-10 vulnerabilities and
threat to online businesses targeting the backend databases.
In this paper, we have reviewed the most popular existing
SQL Injections related issues.

Key findings of this study could be summarized as:
- Detailed survey report on various types of SQL

Injection attacks, vulnerabilities, detection, and
prevention techniques

- Assessment of techniques based on their performance
and practicality

- Awareness information of the threat of SQL
Injections by providing recent and updated cases
and information

- Exploration of “Web Application Security training
tutorials” to train security practitioners to deal
with SQL Injection attacks

The findings of this study could be used for penetration
testing purpose in order to protect data either in academic or
industrial fields. Our research outcomes help:

- to measure the security level of Web Applications
using proposed tools

- to find/detect vulnerabilities of online applications
- to protect applications against using proposed secure

coding approaches
- to train security practitioners on SQL Injection using

the proposed tutorials
We believe that the work would be useful both for the

general readers of the topic as well as for the practitioners.
As a future work, we would like to develop a countermeasure
that can efficiently tackle the innovative SQL Injection
attacks and fix as much vulnerability as possible. Hackers are
in reality very innovative and as the time is passing by, new
attacks are being launched that may need new ways of
thinking about the solutions we currently have at our hands.

91
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

Acknowledgement

This project was supported by NDC Lab, KICT, IIUM.

References

[1] Halfond W. G., Viegas, J., and Orso, A., A
Classification of SQL-Injection Attacks and
Countermeasures. In Proc. of the Intl. Symposium on
Secure Software Engineering, Mar. 2006.

[2] Kemalis, K. and T. Tzouramanis. SQL-IDS: A
Specification-based Approach for SQL injection
Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM
2008, pp. 2153-2158.

[3] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and
Tao, L., A Static Analysis Framework for Detecting
SQL Injection Vulnerabilities. Proc. 31st Annual
International Computer Software and Applications
Conference 2007 (COMPSAC 2007), 24-27 July
(2007), pp. 87-96.

[4] Thomas, S., Williams, L., and Xie, T., On automated
prepared statement generation to remove SQL injection
vulnerabilities. Information and Software Technology,
Volume 51 Issue 3, March 2009, pp. 589–598.

[5] Ruse, M., Sarkar, T., and Basu. S., Analysis &
Detection of SQL Injection Vulnerabilities via
Automatic Test Case Generation of Programs. Proc.
10th Annual International Symposium on Applications
and the Internet, 2010, pp. 31-37.

[6] Junjin, M., An Approach for SQL Injection
Vulnerability Detection. Proc. of the 6th International
Conference on Information Technology: New
Generations, Las Vegas, Nevada, April 2009, pp. 1411-
1414.

[7] Haixia, Y. and Zhihong, N., A database security testing
scheme of web application. Proc. of 4th International
Conference on Computer Science & Education 2009
(ICCSE '09), 25-28 July 2009, pp. 953-955.

[8] Roichman, A., Gudes, E., Fine-grained Access Control
to Web Databases. Proceedings of 12th SACMAT
Symposium, France 2007.

[9] Top 10 2010-A1-Injection, available at:
http://www.owasp.org/index.php/Top_10_2010-A1-
Injection, last accessed 11 June, 2013.

[10] Tajpour, A., Masrom, M., Heydari, M.Z., and Ibrahim,
S., SQL injection detection and prevention tools
assessment. Proc. 3rd IEEE International Conference on
Computer Science and Information Technology
(ICCSIT’10), 9-11 July 2010, pp. 518-522.

[11] Tajpour, A., JorJor Zade Shooshtari, M., Evaluation of
SQL Injection Detection and Prevention Techniques.
Proc. of 2010 Second International Conference on
Computational Intelligence, Communication Systems
and Networks (CICSyN’10), 28-30 July 2010, pp. 216-
221.

[12] Seixas, N., Fonseca, J., Vieira, M., and Madeira, H.,
Looking at Web Security Vulnerabilities from the
Programming Language Perspective: A Field Study.
Proc. of 20th International Symposium on Software
Reliability Engineering 2009 (ISSRE '09),16-19 Nov.
2009, pp. 129-135.

[13] Boyd S.W. and Keromytis, A.D., SQLrand: Preventing
SQL Injection Attacks. Proceedings of the 2nd Applied

Cryptography and Network Security (ACNS’04)
Conference, June (2004), pp. 292–302.

[14] McClure, R.A. and Kruger, I.H., SQL DOM: compile
time checking of dynamic SQL statements. 27th
International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, pp. 88- 96.

[15] Amirtahmasebi, K., Jalalinia, S.R., and Khadem, S., A
survey of SQL injection defense mechanisms.
International Conference for Internet Technology and
Secured Transactions (ICITST 2009), 9-12 Nov.
(2009), pp. 1-8.

[16] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-
T., and Kuo, S.-Y., Securing Web Application Code by
Static Analysis and Runtime Protection. Proc. of 13th
International Conference on World Wide Web, New
York, NY 2004, pp. 40-52.

[17] Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., Using
Parse Tree Validation to Prevent SQL Injection
Attacks. Proc. of 5th International Workshop on
Software Engineering and Middleware, Lisbon,
Portugal 2005, pp. 106–113.

[18] Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N.,
CANDID: Dynamic Candidate Evaluations for
Automatic Prevention of SQL Injection Attacks. ACM
Transactions on Information and System Security,
Volume 13 Issue 2, 2010, DOI:
10.1145/1698750.1698754.

[19] Shin, Y., Williams, L., and Xie, T., SQLUnitGen: Test
Case Generation for SQL Injection Detection. North
Carolina State University, Raleigh Technical report,
NCSU CSC TR 2006-21, 2006.

[20] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An
Authentication Mechanism Against SQL Injection.
European Journal of Scientific Research, Vol. 38, No.
4, 2009, pp. 604-611.

[21] Su, Z. and Wassermann, G., The essence of command
injection attacks in web applications. In ACM
Symposium on Principles of Programming Languages
(POPL’2006), January 2006.

[22] Roichman, A., and Gudes, E., DIWeDa - Detecting
Intrusions in Web Databases. Atluri, V. (ed.) DAS
2008. LNCS, vol. 5094, Springer, Heidelberg, 2008,
pp. 313-329.

[23] Junjin, M., An Approach for SQL Injection
Vulnerability Detection. Sixth International Conference
on Information Technology: New Generations 2009
(ITNG '09), 27-29 April, 2009, pp. 1411-1414.

[24] Baker, R.A., Code Reviews Enhance Software Quality.
In Proceedings of the 19th international conference on
Software engineering (ICSE'97), Boston, MA, USA,
1997, pp. 570-571.

[25] The Open Web Application Security Project (OWASP).
available at:
http://www.owasp.org/index.php/Main_Page, last
accessed 11 June, 2013.

[26] Damn Vulnerable Web Application (DVWA), available
at: http://www.dvwa.co.uk/, last accessed 11 June,
2013.

[27] Web Security Dojo, available at:
http://www.mavensecurity.com/web_security_dojo/, last
accessed 11 June, 2013.

92
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 2, August 2013

[28] daffodil Call Center CRM, available at:

http://crm.daffodilsw.com/daffodilcrm/articles/callcente
rcrm, last accessed 11 June, 2013.

[29] Luong, V., Intrusion Detection And Prevention System:
SQL-Injection Attacks. Master's Projects. Paper 16.
2010.

[30] Kindy, D.A. and Pathan, A.-S.K., A Survey on SQL
Injection: Vulnerabilities, Attacks, and Prevention
Techniques. (Poster) Proceedings of The 15th IEEE
Symposium on Consumer Electronics (IEEE ISCE
2011), June 14-17, Singapore 2011, pp. 468-471.

[31] CODESMITH, available at:
http://www.codesmithtools.com/, last accessed 11 June,
2013.

