traditional medicine. This preliminary study aims to determine the amount of vitamin C (ascorbic acid) and antioxidant (phenol) in local *Paederia foetida*. Parts used are the plant leaves, young leaves and mature leaves. The dried leaves were soaked in ethanol for 1 day at room temperature before being evaporated to obtain the extract. Then, high performance liquid chromatography analysis has been used to analyze the samples. Results obtained show amount of vitamin C in mature leaves is higher than young leaves with 66 ppm and 64 ppm respectively but amount of antioxidant (phenol) are not detected. This shows that, *Paederia foetida* consist considerable high amount of vitamin C and more study should be done on this local species to investigate chemical active compounds with biological function potential.

P-193

Xanthones from *Garcinia malaccensis* Improve GLUT4 as Well as Decreased PPARγ Activation on Adipocytes

Muhammad Taher¹*, Mohamed Zaffar Ali Mohamed Amirouidine¹, Deny Susanti² and Solachuddin JA Ichwan³

¹Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, Pahang, 25200, Malaysia; ²Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, Pahang, 25200, Malaysia; ³Kulliyyah of Dentistry, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, Pahang, 25200, Malaysia.

Email: mtaher@iium.edu.my, muhammad_taher@yahoo.com

In this study, we used α-mangostin, the major xanthone compounds and β-mangostin from *Garcinia malaccensis* Hk.f (locally known as "manggis burung") and evaluate its *in vitro* activities on adipocyte differentiation, glucose uptake and related gene expression (ppary and glu4) mechanism. Firstly, we elucidated the inhibitory effect of the compounds on lipid accumulation of 3T3-L1 preadipocytes by using Oil red O staining. Cell treated with α-mangostin and β-mangostin dose-dependently was found to inhibit the cytoplasmic lipid accumulation as well as adipogenic differentiation of preadipocyte. All compounds showed high lipid inhibition activity at 50 µg/mL concentration (P < 0.05) compared to MDI treated cells. Besides, glucose uptake activity was investigated in differentiated adipocytes using a radioactive-labelled glucose by Liquid Scintillation Counter. The insulin-induced 2-deoxy-D-[3H] glucose uptake activities were significantly improved with increasing the concentration of the test compounds. Further evaluation with the quantitative real time polymerase chain reaction (qRT-PCR) shows that α-mangostin and β-mangostin reduced the expression of ppary genes during adipocyte differentiation. At the same time, induction of glucose uptake by α-mangostin and β-mangostin was accompanied by the increased mRNA expression of glu4 genes. Since downregulation of ppary has been reported to be activated during inhibition of adipogenesis and enhance expression of glu4 has been shown to be increased during glucose uptake we demonstrated that both compounds follow the antiobesity pathways. Taken together, these results indicate that xanthones derived from *Garcinia malaccensis* may be a candidate for preventing metabolic disorders such as obesity.

Keywords: Antiobesity, mangostin compounds, adipogenesis, glucose uptake, gene expression.

P-194

Flavonoids from Malaysian *Uncaria lanosa var. farrea*

Nursyaza Husna Shaharuddin¹*, Rohaya Ahmad¹,² and Nurhuda Manshoor²

¹Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; ²Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA Puncak Alam, 42300 Bandar Puncak Alam Selangor, Malaysia.

Email: rohayaahmad@usalam.uitm.edu.my

Uncaria species are generally used as spasmodylitics, analgesics and sedatives for symptoms associated with nervous disorders but their primary uses derived from traditional medicine is for the treatment of hypertension. In Malaysia, Uncaria species is also known as "Gambir"/akar kait- kait or akar hitam and "gembir paya" or "gembir hitam" are recorded for *Uncaria lanosa*. Continuing our interest in the genus, phytochemistry of the stems of *U. lanosa var. farrea* has afforded three flavones, 3-methyl-3',4',5,7-tetrahydroxyflavone, quercetin, rutin and two coumarins, 4,7,8-trihydroxycoumarin and scopoletin along with two major alkaloids, pteropodine and isopoteropodine. This is the first report of the isolation of 3-methyl-3',4',5,7-tetrahydroxyflavone from a natural source. The structures of compounds were elucidated by various spectroscopic techniques including ¹H,¹³C and 2D NMR as well as by UV, IR and LC- MS methods and comparison with literature.