Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volume 440, 5 January 2014, Pages 116-121

Constant-current electroosmotic dewatering of superabsorbent hydrogel (Article)
Tanaka, T. a, Fujihara, K. a, Jamli, M.S. a, Ivsta, M. a

Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract
The electroosmotic dewatering (EOD) behaviors of gelatinous materials, such as superabsorbent hydrogels or swelling clay, are discussed. The apparent liquid velocity through the materials can be represented in terms of effective-osmotic, electroosmotic and swelling pressure gradients. Taking the creep deformation of the materials into consideration and assuming that the mechanical properties of the materials can be represented by the Terzaghi-Voigt combined model, the basic differential equation expressing EOD of gelatinous materials is solved. The progress of EOD is represented by an average consolidation ratio \(u_c \) as in mechanical expression. The agreement between calculated and experimental \(u_c \) is satisfactory when the creep deformation of the material is considered. The disagreement between theory and experiment in the latter part of EOD may be due to the change of the property of hydrogel caused by dissolution of Fe(III) from stainless steel electrode. © 2012 Elsevier B.V.

Reaxys Database Information

Author keywords
Effective osmotic pressure gradient Electroosmotic dewatering Superabsorbent gel Swelling pressure gradient

Indexed keywords
Engineering controlled terms:
Consolidation ratios Creep deformations Electroosmotic dewatering Liquid velocity Stainless steel electrode Superabsorbent Superabsorbent hydrogel Swelling pressure
Engineering main headings:
Swelling
EMTREE medical terms:
solute dewatering electroosmosis hydrogel pressure gradient priority journal superabsorbent hydrogel velocity

ISSN: 09277757
CODEN: CPEAE
Source Type: Journal
Original language: English

DOI: 10.1016/j.colsurfa.2012.10.020
Document Type: Article
Publisher: Elsevier B.V.