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a b s t r a c t

The use of bioactive compounds in different commercial sectors such as pharmaceutical, food and chem-
ical industries signifies the need of the most appropriate and standard method to extract these active
components from plant materials. Along with conventional methods, numerous new methods have been
established but till now no single method is regarded as standard for extracting bioactive compounds
from plants. The efficiencies of conventional and non-conventional extraction methods mostly depend
on the critical input parameters; understanding the nature of plant matrix; chemistry of bioactive com-
pounds and scientific expertise. This review is aimed to discuss different extraction techniques along
with their basic mechanism for extracting bioactive compounds from medicinal plants.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The qualitative and quantitative studies of bioactive com-
pounds from plant materials mostly rely on the selection of proper
extraction method (Smith, 2003; Sasidharan et al., 2011). Extrac-
tion is the first step of any medicinal plant study, plays a significant
and crucial role on the final result and outcome. Extraction meth-
ods are sometimes referred as ‘‘sample preparation techniques’’.
Most of the time, this part of study is neglected and done by
non-trained research personnel (Hennion et al., 1998), though
two-third of effort of an analytical chemist account for sample
preparation techniques. A study conducted by Majors (1999)
showed that the most of researchers believe in the importance of
sample preparation during any analytical study.

It is true that development of modern chromatographic and
spectrometric techniques make bioactive compound analysis eas-
ier than before but the success still depends on the extraction
methods, input parameters and exact nature of plant parts (Poole
et al., 1990). The most common factors affecting extraction pro-
cesses are matrix properties of the plant part, solvent, temperature,
pressure and time (Hernández et al., 2009). The increased under-
standing about dynamic chemical nature of the diverse bioactive
molecules is pioneer fuel for the progress of bioactive analysis dur-
ing past decade (Torssell, 1997). As a result of these huge techno-
logical and technical improvements; pharmaceuticals, food
additives even on natural pesticides sectors have become inter-

ested in bioactive molecules from natural sources (Anklam et al.,
1998; Ambrosino et al., 1999). Characteristically, bioactive com-
pounds remain together with other compounds present in plants.
Bioactive compounds can be identified and characterized from var-
ious plant parts such as leaves, stem, flower and fruits.

Extraction of plant materials can be done by various extraction
procedures. Non-conventional methods, which are more environ-
mental friendly due to decreased use of synthetic and organic
chemicals, reduced operational time, and better yield and quality
of extract, have been developed during the last 50 years. To en-
hance overall yield and selectivity of bioactive components from
plant materials, ultrasound (Vinatoru et al., 1997; Ghafoor et al.,
2011), pulsed electric field (Toepfl et al., 2006), enzyme digestion
(Gaur et al., 2007), extrusion (Lusas and Watkins, 1988), micro-
wave heating (Kaufmann and Christen, 2002), ohmic heating
(Lakkakula et al., 2004), supercritical fluids (Marr and Gamse,
2000; Lang and Wai, 2001; Meireles and Angela, 2003; Wang
et al., 2008; Ghafoor et al., 2010, 2012), and accelerated solvents
(Kaufmann and Christen, 2002; Smith, 2002) have been studied
as non-conventional methods. At the same time conventional
extraction methods, such as Soxhlet is still considered as one of
the reference method to compare success of newly developed
methodology. Substantial number of scientific reports, book chap-
ters and monograms exist where non-conventional methods were
extensively reviewed (Jennings and Rapp, 1983; Moldoveanu and
David, 2002; Szumski and Buszewski, 2002; Majors, 2003; Smith,
2003; Wang and Weller, 2006). These writings are emphasizing
the use of extraction methods in term of nutraceuticals, food addi-
tives and many other sectors but lack in herbal plant’s bioactive
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compounds extraction. The present paper is aimed to provide a
comprehensive review of different techniques for extraction of bio-
active compounds from medicinal plants.

2. History and definition of bioactive compounds

The history of plant’s used for mankind is as old as the start of
humankind. Initially, people used plants for their nutritional pur-
poses but after the discovery of medicinal properties, this natural
flora became a useful source of disease cure and health improve-
ment across various human communities. Egyptian papyruses
showed that coriander and castor oil were useful for medicinal
applications, cosmetics and preservatives through thousands of
recipes (Vinatoru, 2001). During Greek and Roman period, a thou-
sand of therapeutic uses of herbal plants were described by several
scholars namely Hippocrates, Theophrastus, Celsus, Dioscorides
and many others (Paulsen, 2010). Romanians are known for their
use of medicinal herbs since very long. For example, Herodotus
(5th century B.C) mentioned Leonurus cardiaca (Mother wort)
was used by the people living north of the Danube river in his writ-
ings. In 19th century Romanian pharmacopoeia introduced herbal
products and in 1904 the first institute of medicinal herbs was
established in Cluj city (Vinatoru, 2001). The use of herbal plants
in the ancient time actually illustrates the history of bioactive mol-
ecules. In the past, people had no idea about bioactive molecules
but the use of these compounds was sufficiently diverse in differ-
ent prospect.

Typically, bioactive compounds of plants are produced as sec-
ondary metabolites (Bernhoft, 2010). Every living body, from one
cell bacterium to million cell plants, processes diverse chemical
compounds for their survival and subsistence. All compounds of
biological system can be divided into two broad arenas. One is pri-
mary metabolites, which are the chemical substances aimed at
growth and development, such as carbohydrates, amino acids, pro-
teins and lipids. Another is secondary metabolites, which are a
group of compounds other than primary metabolites believed to
help plant to increase their overall ability to survive and overcome
local challenges by allowing them to interact with their surround-
ings (Harborne, 1993). In different words, secondary metabolites
are those metabolites which are often produced in a phase of sub-
sequent to growth, have no function in growth (although they may
have survival function), are produced by certain restricted taxo-
nomic groups of microorganisms, have unusual chemical struc-
tures, and are often formed as mixtures of closely related
members of a chemical family (Martin and Demain, 1978). The
production of secondary metabolites in different species is mainly
selected through the course of evaluation and the particular need
of that species. For example, synthesis of aroma by floral species
to attract insect for their pollination and fertilization, and synthesis
toxic chemical has evolved toward pathogens and herbivores for
suppressing the growth of neighboring plants (Dudareva and
Pichersky, 2000). Among secondary metabolites some of these sub-
stances have effect on biological systems which are considered as
bioactive. Thus a simple definition of bioactive compounds in
plants is: secondary plant metabolites eliciting pharmacological
or toxicological effects in human and animals (Bernhoft, 2010).

3. Classification and synthesis of bioactive compounds

Classification of bioactive compounds in different categories is
still inconsistent rather it depends upon the intention of the partic-
ular classification. For example, biosynthetic classifications which
serve the simplicity of the description of biosynthetic pathways
that will not match the scope of pharmacological classification.
According to Croteau et al. (2000) bioactive compounds of plants

are divided into three main categories: (a) terpenes and terpenoids
(approximately 25,000 types), (b) alkaloids (approximately 12,000
types) and (c) phenolic compounds (approximately 8000 types).
General structures of different categories of bioactive compounds
are given in Fig. 1.

The majority of bioactive compounds belong to one of a number
of families, each of which has particular structural characteristics
arising from the way in which they are built up in nature (biosyn-
thesis). There are four major pathways for synthesis of secondary
metabolites or bioactive compounds: (1) Shikimic acid pathway,
(2) malonic acid pathway, (3) Mevalonic acid pathway and (4)
non-mevalonate (MEP) pathway (Tiaz and Zeiger, 2006). Alkaloids
are produced by aromatic amino acids (come from shikimic acid
pathway) and by aliphatic amino acids (come from tricarboxylic
acid cycle). Phenolic compounds are synthesized through shikimic
acid pathway and malonic acid pathway. Through mevalonic acid
pathway and MEP pathway terpenes are produced. Simplified illus-
trations of different pathways for the production of three major
groups of plant bioactive compounds are shown in Fig. 2.

4. Extraction of bioactive compounds

Considering the great variations among bioactive compounds
and huge number of plant species, it is necessary to build up a
standard and integrated approach to screen out these compounds
carrying human health benefits. Farnsworth et al. (1985) reported
an integrated approach showing sequence of medicinal plant
study, which started from name collection of frequently used
plants and ended at industrialization. Works of particular order
for medicinal plant study and the position of extraction techniques
are shown by a flow chart in Fig. 3.

It is only possible to conduct further separation, identification,
and characterization of bioactive compounds followed by an appro-
priate extraction process. Different extraction techniques should be
used in diverse conditions for understanding the extraction selectiv-
ity from various natural sources. Different techniques, many of them
remain almost same through hundreds of years; can also be used to
extract bioactive compounds. All these techniques have some com-
mon objectives, (a) to extract targeted bioactive compounds from
complex plant sample, (b) to increase selectivity of analytical meth-
ods (c) to increase sensitivity of bioassay by increasing the concen-
tration of targeted compounds, (d) to convert the bioactive
compounds into a more suitable form for detection and separation,
and (e) to provide a strong and reproducible method that is inde-
pendent of variations in the sample matrix (Smith, 2003).

5. Conventional extraction techniques

Bioactive compounds from plant materials can be extracted by
various classical extraction techniques. Most of these techniques
are based on the extracting power of different solvents in use
and the application of heat and/or mixing. In order to obtain bioac-
tive compounds from plants, the existing classical techniques are:
(1) Soxhlet extraction, (2) Maceration and (3) Hydrodistillation.

Soxhlet extractor was first proposed by German chemist Franz
Ritter Von Soxhlet (1879). It was designed mainly for extraction
of lipid but now it is not limited for this only. The Soxhlet extrac-
tion has widely been used for extracting valuable bioactive com-
pounds from various natural sources. It is used as a model for
the comparison of new extraction alternatives. Generally, a small
amount of dry sample is placed in a thimble. The thimble is then
placed in distillation flask which contains the solvent of particular
interest. After reaching to an overflow level, the solution of the
thimble-holder is aspirated by a siphon. Siphon unloads the solu-
tion back into the distillation flask. This solution carries extracted
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solutes into the bulk liquid. Solute is remained in the distillation
flask and solvent passes back to the solid bed of plant. The process
runs repeatedly until the extraction is completed.

Maceration was used in homemade preparation of tonic from a
long time. It became a popular and inexpensive way to get essen-
tial oils and bioactive compounds. For small scale extraction, mac-
eration generally consists of several steps. Firstly, grinding of plant
materials into small particle is used to increase the surface area for
proper mixing with solvent. Secondly, in maceration process,
appropriate solvent named as menstruum is added in a closed ves-
sel. Thirdly, the liquid is strained off but the marc which is the solid
residue of this extraction process is pressed to recover large
amount of occluded solutions. The obtained strained and the press
out liquid are mixed and separated from impurities by filtration.
Occasional shaking in maceration facilitate extraction by two
ways; (a) increase diffusion, (b) remove concentrated solution
from the sample surface for bringing new solvent to the men-
struum for more extraction yield.

Hydrodistillation is a traditional method for extraction of bioac-
tive compounds and essential oils from plants. Organic solvents are
not involved and it can be performed before dehydration of plant
materials. There are three types of hydrodistillation: water distilla-
tion, water and steam distillation and direct steam distillation
(Vankar, 2004). In hydrodistillation, first, the plant materials are
packed in a still compartment; second, water is added in sufficient
amount and then brought to boil. Alternatively, direct steam is in-
jected into the plant sample. Hot water and steam act as the main
influential factors to free bioactive compounds of plant tissue. Indi-
rect cooling by water condenses the vapor mixture of water and
oil. Condensed mixture flows from condenser to a separator, where
oil and bioactive compounds separate automatically from the
water (Silva et al., 2005). Hydrodistillation involves three main
physicochemical processes; Hydrodiffusion, hydrolysis and
decomposition by heat. At a high extraction temperature some
volatile components may be lost. This drawback limits its use for
thermo labile compound extraction.

a1 a2

b c

d

f g

e

Fig. 1. General structures of different categories of plant bioactive compounds: alkaloids (a1 and a2), monoterpenes (b), sesqueterpenes (c), triterpenes, saponins, steroid (d),
flavonoids (e), polyacetylenes (f), polyketides (g) (Wink, 2003).
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Extraction efficiency of any conventional method mainly de-
pends on the choice of solvents (Cowan, 1999). The polarity of
the targeted compound is the most important factor for solvent
choice. Molecular affinity between solvent and solute, mass trans-
fer, use of co-solvent, environmental safety, human toxicity and
financial feasibility should also consider in selection of solvent
for bioactive compound extraction. Some examples of bioactive
compound extracted using different solvents are given in Table 1.

6. Non-conventional extraction techniques

The major challenges of conventional extraction are longer
extraction time, requirement of costly and high purity solvent,
evaporation of the huge amount of solvent, low extraction selectiv-
ity and thermal decomposition of thermo labile compounds (Luque
de Castro and Garcia-Ayuso, 1998). To overcome these limitations
of conventional extraction methods, new and promising extraction
techniques are introduced. These techniques are referred as non-
conventional extraction techniques. Some of the most promising
techniques are ultrasound assisted extraction, enzyme-assisted
extraction, microwave-assisted extraction, pulsed electric field as-

sisted extraction, supercritical fluid extraction and pressurized li-
quid extraction. Some of these techniques are considered as
‘‘green techniques’’ as they comply with standards set by Environ-
mental Protection Agency, USA (http://www.epa.gov/greenchem-
istry/pubs/about_gc.html). These include less hazardous chemical
synthesis; designing safer chemicals, safe solvents auxiliaries, de-
sign for energy efficiency, use of renewable feedstock, reduce
derivatives, catalysis, design to prevent degradation, atom econ-
omy, and time analysis for pollution prevention and inherently
safer chemistry for the prevention of accident.

6.1. Ultrasound-assisted extraction (UAE)

Ultrasound is a special type of sound wave beyond human hear-
ing. Usually, in chemistry it is 20 kHz to 100 MHz. Like other
waves, it passes through a medium by creating compression and
expansion. This process produces a phenomenon called cavitation,
which means production, growth and collapse of bubbles. A large
amount of energy can produce from the conversion of kinetic en-
ergy of motion into heating the contents of the bubble. According
to Suslick and Doktycz (1990), bubbles have temperature about

Fig. 2. A simplified view of pathways for production of three major groups of plant bioactive compounds (adapted from Tiaz and Zeiger (2006)).
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5000 K, pressure 1000 atm and, heating and cooling rate above
1010 K/s. Based on this principle, UAE has been developed. Only li-
quid and liquid containing solid materials have cavitation effect.
The main benefit of UAE can be observed in solid plant sample be-
cause ultrasound energy facilitates organic and inorganic com-
pounds leaching from plant matrix (Herrera and Luque de Castro,
2005). Probable mechanism is ultrasound intensification of mass

transfer and accelerated access of solvent to cell materials of plant
parts. The extraction mechanism by ultrasound involves two main
types of physical phenomena, (a) the diffusion across the cell wall
and (b) rinsing the contents of cell after breaking the walls (Mason
et al., 1996). Moisture content of sample, milling degree, particle
size and solvent are very important factors for obtaining efficient
and effective extraction. Furthermore, temperature, pressure,

Fig. 3. The flow chart of medicinal plant study and position of extraction techniques (adapted from Farnsworth et al. (1985)).
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frequency and time of sonication are the governing factors for the
action of ultrasound. UAE have also been incorporated along with
various classical techniques as they are reported to enhance the
efficiency of a conventional system. In a solvent extraction unit,
an ultrasound device is placed in an appropriate position to en-
hance the extraction efficiency (Vinatoru et al., 1998).

The advantages of UAE include reduction in extraction time, en-
ergy and use of solvent. Ultrasound energy for extraction also facil-
itates more effective mixing, faster energy transfer, reduced
thermal gradients and extraction temperature, selective extraction,
reduced equipment size, faster response to process extraction con-
trol, quick start-up, increased production and eliminates process
steps (Chemat et al., 2008).

UAE is seemed to be an effective extraction technique for bioac-
tive compound extraction from herbal plants. Rostagno et al.
(2003) showed extraction efficiency of four isoflavone derivatives
namely, daidzin, genistin, glycitin and malonyl genistin from soy-
bean with mix-stirring method using different extraction times
and solvents. Authors found that ultrasound can improve the
extraction yield depending on solvent use. Herrera and Luque de
Castro (2004) extracted phenolic compounds such as rutin, narin-
gin, naringenin, quercetin, ellagic acid and kaempferol from straw-
berries using 0.8 s duty cycle for 30 s by developing semiautomatic
method based on ultrasounds. Li et al. (2005) found better recovery
of chlorogenic acid from fresh leaves, fresh bark and dried bark of
Eucommia ulmodies Oliv. by UAE at optimized condition (70%
methanol, 20:1 solvent, sample ratio and 30 min time) than classi-
cal extraction techniques. Yang and Zhang (2008) applied opti-
mized sonication condition to extract bioactive compounds called
rutin and quercetin from Euonymus alatus (Thund.) Sieb and con-
cluded that ultrasonic method had better extraction efficiency than
conventional methods. Ionic liquid based UAE have been regarded
as very effective for extracting three alkaloids (vindoline, catharan-
thine and vinblastine) from Catharanthus roseus (Yang et al., 2011).
Anthocyanins and phenolic compounds were extracted from grape
peel using UAE and the extraction process was optimized with ref-
erence to solvent, extraction temperature and time (Ghafoor et al.,
2011, 2009). Phenolcarboxylic acids, carnosic acid and rosmarinic
acid were extracted from Rosmarinus officinalis using Ionic liquid
based UAE technique which was proved to have high efficiency
and shorter extraction time than conventional extraction methods
(Zu et al., 2012).

6.2. Pulsed-electric field extraction (PEF)

The pulsed electric field (PEF) treatment was recognized as use-
ful for improving the pressing, drying, extraction, and diffusion
processes during the last decade (Barsotti and Cheftel, 1998;
Angersbach et al., 2000; Vorobiev et al., 2005; Vorobiev and Leb-
ovka, 2006). The principle of PEF is to destroy cell membrane struc-
ture for increasing extraction. During suspension of a living cell in
electric field, an electric potential passes through the membrane of
that cell. Based on the dipole nature of membrane molecules, elec-
tric potential separates molecules according to their charge in the
cell membrane. After exceeding a critical value of approximately

1 V of transmembrane potential, repulsion occurs between the
charge carrying molecules that form pores in weak areas of the
membrane and causes drastic increase of permeability (Bryant
and Wolfe, 1987). Usually, a simple circuit with exponential decay
pulses is used for PEF treatment of plant materials. It has a treat-
ment chamber consisting of two electrodes where plant materials
are placed. Depending on the design of treatment chamber PEF
process can operate in either continuous or batch mode (Puértolas
et al., 2010). The effectiveness of PEF treatment strictly depends on
the process parameters, including field strength, specific energy in-
put, pulse number, treatment temperature and properties of the
materials to be treated (Heinz et al., 2003).

PEF can increase mass transfer during extraction by destroying
membrane structure of plant materials for enhancing extraction
and decreasing extraction time. PEF has been applied to improve
release of intracellular compounds from plant tissue with the help
of increasing cell membrane permeability (Toepfl et al., 2006). PEF
treatment at a moderate electric field (500 and 1000 V/cm; for
10�4–10�2 s) is found to damage cell membrane of plant tissue
with little temperature increase (Fincan and Dejmek, 2002; Leb-
ovka et al., 2002). Due to this reason, PEF can minimize the degra-
dation of heat sensitive compounds (Ade-Omowaye et al., 2001).
PEF is also applicable on plant materials as a pretreatment process
prior to conventional extraction to lower extraction effort (López
et al., 2009).

PEF treatment (at 1 kV/cm with low energy consumption of
7 kJ/kg) in a solid liquid extraction process for extraction of betanin
from beetroots showed highest degree of extraction compared
with freezing and mechanical pressing (Fincan et al., 2004). Guder-
jan et al. (2005) showed that the recovery of phytosterols from
maize increased by 32.4% and isoflavonoids (genistein and daidz-
ein) from soybeans increased by 20–21% when PEF was used as
pretreatment process. Corralesa et al. (2008) extracted bioactive
compound such as anthocyanins from grape by-product using var-
ious techniques and found better extraction of anthocyanin mono-
glucosides by PEF. The application of a PEF treatment on grape skin
before maceration step can reduce the duration of maceration and
improve the stability of bioactives (anthocyanin and polyphenols)
during vinification (López et al., 2008). The permeabilization of
Merlot skin by a pulsed electric field treatment resulted in in-
creased extraction of polyphenols and anthocyanins (Delsart
et al., 2012).

6.3. Enzyme-assisted extraction (EAE)

Some phytochemicals in the plant matrices are dispersed in cell
cytoplasm and some compounds are retained in the polysaccha-
ride-lignin network by hydrogen or hydrophobic bonding, which
are not accessible with a solvent in a routine extraction process.
Enzymatic pre-treatment has been considered as a novel and an
effective way to release bounded compounds and increase overall
yield (Rosenthal et al., 1996). The addition of specific enzymes like
cellulase, a-amylase, and pectinase during extraction enhances
recovery by breaking the cell wall and hydrolyzing the structural
polysaccharides and lipid bodies (Rosenthal et al., 1996; Singh

Table 1
Example of some extracted bioactive compounds by different solvents (adapted from Cowan (1999)).

Water Ethanol Methanol Chloroform Dichloromethanol Ether Acetone

Anthocyanins Tannins Anthocyanin Terpenoids Terpenoids Alkaloids Flavonoids
Tannins Polyphenols Terpenoids Flavonoids Terpenoids
Saponins Flavonol Saponins
Terpenoids Terpenoids Tannins

Alkaloids Flavones
Polyphenols

J. Azmir et al. / Journal of Food Engineering 117 (2013) 426–436 431
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et al., 1999). There are two approaches for enzyme-assisted extrac-
tion: (1) enzyme-assisted aqueous extraction (EAAE) and (2) en-
zyme-assisted cold pressing (EACP) (Latif and Anwar, 2009).
Usually, EAAE methods have been developed mainly for the extrac-
tion of oils from various seeds (Hanmoungjai et al., 2001; Rosen-
thal et al., 1996, 2001; Sharma et al., 2002). In EACP technique,
enzymes is used to hydrolyze the seed cell wall, because in this
system polysaccharide-protein colloid is not available, which is
obvious in EAAE (Concha et al., 2004). Various factors including en-
zyme composition and concentration, particle size of plant materi-
als, solid to water ratio, and hydrolysis time are recognized as key
factors for extraction (Niranjan and Hanmoungjai, 2004). Domin-
guez et al. (1995) reported that the moisture content of plant
materials is also an important factor for enzymatic hydrolysis.
Bhattacharjee et al. (2006) described EACP as an ideal alternate
for extracting bioactive components from oilseed, because of its
nontoxic and noninflammable properties. The oil extracted by en-
zyme-assisted methods was found to contain higher amount of
free fatty acids and phosphorus contents than traditional hexane-
extracted oil (Dominguez et al., 1995). The EAE is recognized as
eco-friendly technology for extraction of bioactive compounds
and oil because it uses water as solvent instead of organic chemi-
cals (Puri et al., 2012).

EAE of phenolic antioxidants from grape pomace during wine
production was tested by Meyer et al. (1998) who found a correla-
tion between yield of total phenols and degree of plant cell wall
breakdown by enzyme. Landbo and Meyer (2001) showed im-
proved release of phenolic compounds from Ribes nigrum pomace
using various enzymes. Li et al. (2006) extracted total phenolic
contents from five citrus peels (Yen Ben lemon, Meyer lemon,
grapefruit, mandarin and orange) by EAAE using different enzymes
and the recovery was highest with celluzyme MX. Another impor-
tant finding of that study was the extraction of phenolic antioxi-
dants improved significantly with higher enzyme concentration.
Maier et al. (2008) used mixture of pectinolytic and cellulolytic en-
zyme in the ratio of 2:1 to extract bioactive compounds (phenolic
acids, non-anthocyanin flavonoids and anthocyanins) from grape
pomace where obtained yields were higher compared with sul-
fite-assisted extraction. Extraction of phenolic antioxidant from
raspberry solid wastes was increased by application of enzyme in
hydro-alcoholic extraction compared with non-enzymatic control
(Laroze et al., 2010). Gómez-García et al. (2012) extracted phenolic
compounds from grape waste using different types of enzymes,
celluclast, pectinex and novoferm in EAE and found that novoferm
had the strongest effect on phenolic release from grape waste. The
authors illustrated enzyme technology as an alternative to extract
bioactive compounds from agro-industrial byproducts.

6.4. Microwave assisted extraction (MAE)

The microwave-assisted extraction is also considered as a novel
method for extracting soluble products into a fluid from a wide
range of materials using microwave energy (Paré et al., 1994).
Microwaves are electromagnetic fields in the frequency range from
300 MHz to 300 GHz. They are made up of two oscillating fields
that are perpendicular such as electric field and magnetic field.
The principle of heating using microwave is based upon its direct
impacts on polar materials (Letellier and Budzinski, 1999). Electro-
magnetic energy is converted to heat following ionic conduction
and dipole rotation mechanisms (Jain, 2009). During ionic conduc-
tion mechanism heat is generated because of the resistance of
medium to flow ion. On the other hand, ions keep their direction
along field signs which change frequently. This frequent change
of directions results in collision between molecules and conse-
quently generates heat. The extraction mechanism of microwave-
assisted extraction is supposed to involve three sequential steps

described by Alupului (2012): first, separation of solutes from ac-
tive sites of sample matrix under increased temperature and pres-
sure; second, diffusion of solvent across sample matrix; third,
release of solutes from sample matrix to solvent. Several advanta-
ges of MAE have been described by Cravottoa et al. (2008) such as
quicker heating for the extraction of bioactive substances from
plant materials; reduced thermal gradients; reduced equipment
size and increased extract yield. MAE can extract bioactive com-
pounds more rapidly and a better recovery is possible than conven-
tional extraction processes. It is a selective technique to extract
organic and organometallic compounds that are more intact.
MAE is also recognized as a green technology because it reduces
the use of organic solvent (Alupului, 2012).

For polyphenols and caffeine extraction from green tea leaves,
MAE achieved higher extraction yield at 4 min than any extraction
methods at room temperature for 20 h (Pan et al., 2003). Ginseno-
sides extraction yield from ginseng root obtained by 15 min using
focused MAE technique was better than conventional solvent
extraction for 10 h (Shu et al., 2003). Dhobi et al. (2009) showed in-
creased extraction efficiency of MAE by extracting a flavolignin,
silybinin from Silybum marianum compared with the conventional
extraction techniques like Soxhlet, maceration. Asghari et al.
(2011) extracted some bioactive compounds (E- and Z-guggolster-
one, cinnamaldehyde and tannin) from various plants under opti-
mum conditions and showed that, MAE is faster and easier
method in comparison to conventional extraction processes. MAE
was applied to release bound phenolic acids from bran and flour
fractions of sorghum and maize of different hardness by Chiremba
et al. (2012). MAE process from Chinese quince (Chaenomeles sinen-
sis) was optimized for solvent concentration, extraction time and
microwave power using designed experiments to maximize recov-
eries of flavonoids and phenolics and to enhance electron donating
ability of the extracts (Hui et al., 2009).

6.5. Pressurized liquid extraction (PLE)

In 1996, Richter et al. first described PLE. This method is now
known by several names; pressurized fluid extraction (PFE), accel-
erated fluid extraction (ASE), enhanced solvent extraction (ESE),
and high pressure solvent extraction (HSPE) (Nieto et al., 2010).
The concept of PLE is the application of high pressure to remain
solvent liquid beyond their normal boiling point. High pressure
facilitates the extraction process. Automation techniques are the
main reason for the greater development of PLE-based techniques
along with the decreased extraction time and solvents require-
ment. PLE technique requires small amounts of solvents because
of the combination of high pressure and temperatures which pro-
vides faster extraction. The higher extraction temperature can pro-
mote higher analyte solubility by increasing both solubility and
mass transfer rate and, also decrease the viscosity and surface ten-
sion of solvents, thus improving extraction rate (Ibañez et al.,
2012).

In comparison to the traditional soxhlet extraction PLE was
found to dramatically decrease time consumption and solvent
use (Richter et al., 1996). Now a days, for extraction of polar com-
pounds, PLE is also considered as a potential alternative technique
to supercritical fluid extraction (Kaufmann and Christen, 2002).
PLE is also useful for the extraction of organic pollutants from envi-
ronmental matrices those are stable at high temperatures (Wang
and Weller, 2006). PLE has also been used for the extraction of bio-
active compounds from marine sponges (Ibañez et al., 2012).
Applications of PLE technique for obtaining natural products are
frequently available in literature (Kaufmann and Christen, 2002).
Additionally, due to small amount organic solvent use PLE gets
broad reorganization as a green extraction technique (Ibañez
et al., 2012).
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PLE has been successfully applied to extract bioactive com-
pounds from different plant materials. Using optimized condition
isoflavones were extracted from soybeans (freeze-dried) without
degradation by PLE (Rostagno et al., 2004). Shen and Shao (2005)
compared ASE for extraction of terpenoids and sterols from tobac-
co with Soxhlet extraction and ultrasonically assisted extraction. In
consideration of yield, reproducibility, extraction time, and solvent
consumption, PLE has been considered as an alternate to conven-
tional methods due to faster process and lower solvent use. Flavo-
noids extracted from spinach by PLE using a mixture of ethanol and
water (70:30) solvent at 50–150 �C were more effective than water
solvent at 50–130 �C (Howard and Pandjaitan, 2008). Luthria
(2008) showed temperature, pressure, particle size, flush volume,
static time, and solid-to-solvent ratio parameters have influence
on the extraction of phenolic compounds from parsley (Petroseli-
num crispum) flakes by PLE. PLE was optimized for extraction of
lycorine and galanthamine (Amaryllidaceae alkaloids) from Narcis-
sus jonquilla and an optimized PLE method was more effective than
hot-solvent extraction, MAE, and UAE (Mroczek and Mazurek,
2009). Individual phenolic compounds such as gallocatechin
(GCT), catechin, epicatechin gallate, caffeic acid, chlorogenic acid,
and myricetin and total phenolic contents were recovered from
various parts of Anatolia propolis using PLE at optimum condition
(40 �C, 1500 psi for 15 min) (Erdogan et al., 2011).

6.6. Supercritical fluid extraction (SFE)

The application of supercritical fluid for extraction purposes
started with its discovery by Hannay and Hogarth (1879) but the
credit should also be given to Zosel who presented a patent for
decaffeination of coffee using SFE (Zosel, 1964). Since this begin-
ning, supercritical fluid technique has attracted wide scientific
interest and it was successfully used in environmental, pharma-
ceutical and polymer applications and food analysis (Zougagh
et al., 2004). Several industries have been using this technique
for many years, especially, decaffeinated coffee preparation indus-
tries (Ndiomu and Simpson, 1988).

Every earthly substance has three basic states namely; Solid, Li-
quid and Gas. Supercritical state is a distinctive state and can only
be attained if a substance is subjected to temperature and pressure
beyond its critical point. Critical point is defined as the character-
istic temperature (Tc) and pressure (Pc) above which distinctive
gas and liquid phases do not exist (Inczedy et al., 1998). In super-
critical state, the specific properties of gas and/or liquid become
vanish, which means supercritical fluid cannot be liquefied by
modifying temperature and pressure. Supercritical fluid possesses
gas-like properties of diffusion, viscosity, and surface tension,
and liquid-like density and solvation power. These properties make
it suitable for extracting compounds in a short time with higher
yields (Sihvonen et al., 1999). A basic SFE system consists of the fol-
lowing parts: a tank of mobile phase, usually CO2, a pump to pres-
surize the gas, co-solvent vessel and pump, an oven that contains
the extraction vessel, a controller to maintain the high pressure in-
side the system and a trapping vessel. Usually different type of me-
ters like flow meter, dry/wet gas meter could be attached to the
system. A symmetric diagram of typical SFE instrumentation is gi-
ven in Fig. 4.

Carbon dioxide is considered as an ideal solvent for SFE. The
critical temperature of CO2 (31 �C) is close to room temperature,
and the low critical pressure (74 bars) offers the possibility to oper-
ate at moderate pressures, generally between 100 and 450 bar
(Temelli and Güçlü-Üstündag, 2005). The only drawback of carbon
dioxide is its low polarity which makes it ideal for lipid, fat and
non-polar substance, but unsuitable for most pharmaceuticals
and drug samples. The limitation of low polarity of carbon dioxide
has been successfully overcome by the use of chemical modifier

(Lang and wai, 2001; Ghafoor et al., 2010). Usually a small amount
of modifier is considered as useful to significantly enhance the
polarity of carbon dioxide. For example, 0.5 ml of Dichloromethane
(CH2Cl2) can enhance the extraction which is same for 4 h hydrodi-
stillation (Hawthorne et al., 1994). The properties of sample and
targeted compounds and the previous experimental result are
main basis for selection of the best modifier.

The successful extraction of bioactive compounds from plant
materials rely upon several parameter of SFE and most importantly
these parameter are tunable (Raverchon and Marco, 2006). These
parameter need to be precisely controlled for maximizing benefits
from this technique. The major variables influencing the extraction
efficiency are temperature, pressure, particle size and moisture
content of feed material, time of extraction, flow rate of CO2, and
solvent-to-feed-ratio (Temelli and Güçlü-Üstündag, 2005; Ibañez
et al., 2012).

The advantages of using supercritical fluids for the extraction of
bioactive compounds can be understood considering following
points (Lang and wai, 2001): (1) The supercritical fluid has a higher
diffusion coefficient and lower viscosity and surface tension than a
liquid solvent, leading to more penetration to sample matrix and
favorable mass transfer. Extraction time can be reduced substan-
tially by SFE in compared with conventional methods. (2) The re-
peated reflux of supercritical fluid to the sample provides
complete extraction. (3) The selectivity of supercritical fluid is
higher than liquid solvent as its solvation power can be tuned
either by changing temperature and/or pressure. (4) Separation
of solute from solvent in conventional extraction process can easily
be bypassed by depressurization of supercritical fluid, which will
save time. (5) SFE is operated at room temperature, so an ideal
method for thermo labile compound extraction. (6) In SFE, small
amount of sample can be extracted compared with solvent extrac-
tion methods which will save time for overall experiment. (7) SFE
uses little amount of organic solvent and considered as environ-
ment friendly. (8) On-line coupling of SFE with chromatographic
process is possible which is useful for highly volatile compounds.
(9) The recycling and reuse of supercritical fluid is possible and
thus minimizing waste generation. (10) SFE scale can be arranged
on specific purpose from few milligram samples in laboratory to
tons of sample in industries. (11) SFE process provides information
regarding extraction process and mechanism which can be manip-
ulated to optimize extraction process.

Saldaña et al. (1999) extracted purine alkaloids (caffeine, theo-
bromine, and theophylline) from Ilex paraguaryensis (herbal maté
tea) using SFE at 313–343 K temperature and pressure from 14–
24 MPa. Supercritical CO2 modified with ethanol (15 wt.%) gave
higher extraction yields of naringin (flavonoid) from citrus paradise
than pure supercritical carbon dioxide at 9.5 MPa and 58.6 �C
(Giannuzzo et al., 2003). Polyphenols and procyanidins were ex-
tracted from grape seeds using SFE, where methanol was used as
modifier and methanol modified CO2 (40%) released more than
79% of catechin and epicatechin from grape seed (Khorassani and
Taylor, 2004). Verma et al. (2008) used optimized condition of
SFE to extract indole alkaloids from Catharanthus roseus leaves
and best recoveries for catharanthine were at 25 MPa and 80 �C
using 6.6% methanol as modifier for 40 min.

7. Concluding remarks

The ever growing demand to extract plant bioactive compounds
encourages continuous search for convenient extraction methods.
The chromatography advancement and awareness about environ-
ment are two important factors for the development of most
non-conventional extraction processes. However, understanding
of every aspect of non-conventional extraction process is vital as
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most of these methods are based on different mechanism and
extraction enhancement is resulted from different process. Incor-
poration and development of hybrid methods should also be inves-
tigated considering plant material characteristics and choice of
compounds. Sufficient experimental data is still lacking in some
of the existing methods. Proper choice of standard methods also
influences the measurement of extraction efficiency. On the other
hand, the increasing economic significance of bioactive compounds
and commodities rich in these bioactive compounds may lead to
find out more sophisticated extraction methods in future.
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