Collaboration of Integrative Processes Intermediaries Supporting Supply Chain Management
MOHD IZZUDDIN MOHD TAMRIN, TENGKU MOHD TENGKU SEMBOK
Department of Computer Science
International Islamic University Malaysia
50728 Gombak, Selangor
MALAYSIA
izzuddin@iium.edu.my, tmts@iium.edu.my
Abstract: - The supply chain activities require intensive interactions between the members in the supply chain group. The ongoing interactions are also important after the execution of the pre-planned activities to monitor and restructure the processes in case of deviation occurred in the middle of execution. The authors introduce collaboration algorithms running in an Integrative Information Management Architecture (IIMA). The algorithms are an intermediary processes to provide semi automated assistance to the management team for tighter supply chain integration. The algorithms are designed to undergo six main phases to facilitate continuous monitoring of supply chain activities across the group and supporting process restructuring when inflicted by common supply chain problems. The authors had evaluated the performance of the IIMA with three other systems in simulated environments. The results showed that the IIMA was more stable in its performance compared to other systems in supporting customization processes inflicted with common supply chain problems at both early and later stages of the processes.
Key-Words: - Collaboration Algorithms, Intermediary Processes, Integrative Architecture
1
Introduction

The supply chains activities are responsible to produce products and services to the consumers. A good supply chain management can directly influence the growth of economic activities of a country. However, integration issues between the interacting members in the complex network of the supply chain reduced the flexibility of the members to restructure pre-plan joined operations and react to common problems that may inflicted on the ongoing operations.
These issues include limited visibilities on the activities across the supply chain group [5], the systems worked in isolation with limited communication [7], and the information available in the servers do not reflect the ongoing supply chain activities [1]. In this paper, we introduced the collaboration algorithm as an intermediary processes to facilitate tighter integration between the members in the supply group through an Integrated Information Management Architecture (IIMA). Firstly, Radio Frequency Identification (RFID) services are offered by manipulating data from network of readers to provide process related information and detect deviations from the joined operations.
Secondly, the IIMA wraps functionalities of the systems in the supply chain and provide them as services to allow flexible process restructuring. The IIMA is designed to work in a service based supply chain [8]. In the subsequent sections, we will describe the related works, followed by the organization of the IIMA. In section 4, we present the collaboration algorithm that governed the interactions between the components of the IIMA. The evaluation of the collaboration algorithm will be present in section 5. Finally, we describe the results, analysis and conclusion.
2
Related Works
The RFID mean time architecture [4] utilized data from the network of readers but extracted the only the time segment from the data. Their motivation is to determine the average time taken for the processes to finish executing and improved on the processes with high bottleneck. The customization system [3] employed a more sophisticated way of analyzing the data with the introduction of network coefficients. These network coefficients can distinguish between different type of flows such as the degree of input and output. In contrast, these two architectures give information at flow level and not process level in that the system cannot tell the exact activities that are executing.

The model based monitoring system [6] transformed data from the readers into complex events and employed the constraint based component model to monitor the state of the processes. We employed a simpler approach to match the events against the support models that are context specific and can be changed by uploading alternative models into the IIMA. So far, there is no mechanism for facilitating flexible process restructuring. The collaborator system [2] in contrast, setup portal to invoke services from across the supply chain members for supporting flexible shared processes. Instead of offering new services, we wrapped up the functionalities from existing systems and allowed mixture with RFID services.
3
Organization of Architecture
[image: image1.jpg]o——0n Member 1 Fixed Network—e &——0n Member 2 Fixed Network—e

LA L

Existing System Manager Manager Existing System

e A ——— S ey il

RFID Reader RFID Reader

Fig. 1. Organization of the IIMA

Fig. 1 shows the organization of the IIMA. The components of the IIMA sits between the existing systems and the network of RFID readers. These components are organized into two sets. The first set comprised of the system communicator, RFID service provider and system communicator. This set is refer to as the subsystem and are installed on a server at every network of the members across the supply chain group. The system communicator is responsible to wrap the functionalities of the existing systems and offered them as services to the service handler.
The RFID service provider is responsible to transform data from the readers into process related information. The service handler serves as a middleman between the subsystem and the second set of components. It is resposible to detect deviation in the ongoing shared processes and triggered process restructuring procedure. The second set comprised of sevice integrator, case handler and information handler. This set is refer to as the main system and is installed in the main server. The service integrator serves as the middleman between the main system and local subsystems.
The case handler is responsible to generate recommendation on alternative services to overcome problems. The information handler is responsible to check process constraints on the service recommended by the case handler. The service handler, case handler and the information handler utilized the problem model, case model and information model respectively to perform their tasks. These support models are context specific and are replaceable to support for different supply chain environment.
4
Collaboration Algorithm
The interactions of these components are designed to undergo six main phases but we will be excluding the last phase because it is only required for the second stage of this project. In the following subsections, we describe the high level descriptions in the form of pseudo-code. Fig. 2 present the notation used in the collaboration algorithms.

Fig. 2. Notations Used in Algorithm Description
4.1 The Vigilant Phase

Fig. 3 describes the first phase of the collaboration algorithm whereby the rfidServer continuously listening to the new data captured by the readers at local vicinity of a member in the group. First of all, the RFID provider checks to determine whether the member number had been written in the tag memories. The “writeLink” method will be invoked if the member number is non existence otherwise the “startMonitor” method will be invoked to initiate the transformation of LD to LE. For every tag scanned in the LD at that specific moment in time, their IDs are associated with the location and operation in a particular segment of member local vicinity. The location can be extracted from reader ID whereas the operation can be extracted from the location of a particular segment in vicinity.

Fig. 3. Algorithm Description for Vigilant Phase
4.2 The Deviation Phase

Fig. 4 describes the second phase of the collaboration algorithm. The event manager is a subcomponent of the service handler and responsible to initiate the procedure for deviation checking in the ongoing supply chain processes. For every event in the LE, the location and time will be matched against the corresponding location and time in the LI. In addition, the location and time of the instruction in LI will be matched against the corresponding location and time of the LT. If the both conditions are fulfilled, the event manager store the event in the centralize database. Otherwise, based on the problems detected, the LP will be forwarded to the main system to initiate process restructuring.

Fig. 4. Algorithm Description for Deviation Phase
4.3 The Alteration Phase

Fig. 5. Algorithm Description for Alteration Phase
Fig. 5 describes the third phase of the collaboration algorithm. The case interface, subcomponents for the service integrator initiates the procedure for process restructuring by invoking the “initiateChange” method call. In parallel, the subsystem is supposed to stop ongoing processes from running via the execution manager by checking the creation of events in the previous phase. Next, the service integrator requested alternative solution to overcome the problem from case manager. Every members in the LTM will be consulted and make the changes to the solutions if necessary. Once the team members have reached consensus on the alternative solution indicated through the LFM, the validation phase starts.
4.4 The Validation Phase

Fig. 6 describes the fourth phase of the collaboration algorithm. The information handler is responsible to verify whether the alternative solution meet the process constraints. First of all, the LC is utilized to get details information on the alternative solutions in term of the operations that will take place, the input required and the output generated. This information will be stored in the LER. Next, the information model, namely infoDoc, will be used to determine whether potential member is fit to execute the alternative solution. The criteria the information handler searches for are: (1) the solution is within the job scope of the member, (2) the member has access to the information, and (3) the member is an active contributor to the group. In case of negative validation, the while loop is created to go back to the previous phase.

Fig. 6. Algorithm Description for Validation Phase
4.5 The Switch Over Phase

Fig. 7 describes the fifth phase of the collaboration algorithm. The service which deviated from original planning is extracted from the LSS with the “remove” method call by supplying probIndex as the argument. Next, the remaining services from the original planning are appended to the updated LC. The newly restructured processes in the LC for the entire group needed to be partition based on services from the same member. This is to ease delegation of services to the local service handler; the member number and the reference number are matched before storing the services into the LCpartial. This process continues until the complete set of LCpartial is attained. The process manager is responsible to delegate one LCpartial at a time to the corresponding service handler in the right sequence and wait for the confirmation from the event manager before proceeding with the next LCpartial.

Fig. 7. Switch Over Phase Algorithm Description
5
Evaluations
In order to prove that the collaboration algorithm can address the integration issues and support the supply chain processes, we have developed the prototype of the IIMA. In following subsections, we describe the simulated environment in which we designed to test the IIMA, the results and discussion.
5.1 The Simulated Environment

The simulated environments are designed into 4 dimensions. The first dimension is with the IIMA prototype that runs the collaboration algorithm mentioned in the previous section. The second dimension is with three alternative systems. The first system has the capability to monitor the ongoing processes across the members in the supply chain group but not capable to restructure pre-planned processes after their execution. In contrast, the second and third systems are capable of restructuring the ongoing processes but have no ability to continuously monitor the processes. For this reason, they incur three and five days delays respectively before reacting to the problems.

In the third dimension, we introduce three types of customization processes undertaken by the group to provide customize e-commerce solutions to the clients: basic, focus and full-fledge. For each type of customization processes, there are two different tracks available to produce solutions for two different server capabilities. In the fourth dimension, we introduce two types of problems inflicted on the customization processes at the early and last stage of the processes. The problems are transportation delay and misplace items respectively. In term of simulation computing setup, components of the subsystems are run in two separate servers on every network of the members in the supply chain group. The main system and the centralize database are run in another centralized servers. The total servers required to run the simulation amounted to 10 local servers and 2 centralized servers.
5.2 Results and Analysis

[image: image2.png]No of Processes

Completed

onN B O ®

W Typel

mIMA

W Type2(3Days)
Basic Focus Full mType2(5Days)
Type of Customization

Fig. 8. Delay: Number of Completed Processes
The performance of the IIMA compared to the other three systems are not much difference when inflicted with the misplace items problem in supporting three types of customization processes. This is because the items are misplace at the very last stage of the customization processes and the remaining number of processes left for execution are down to one task. Conversely, the performance of the IIMA has improved compared to other three systems when inflicted with the transportation delay which occurred at the very early stage of the customization processes. Fig. 8 demonstrates system 1 unable to continue with the required customization processes right after the transportation problem occurred at the second process across the basic, focus and full-fledge customization processes

In contrast, system 2 with the five days delay began to miss executing the processes in the focus customization processes whereas system two with three days delay in the full-fledge customization processes. This is because as the required number of processes increase from basic to full-fledge customization processes, the numbers of safety buffer (in days) proportionally decrease. The delay (in days) for system 2 requires the right time frame in the safety buffer to complete the customization processes in timely manner. For example, the safety buffer for focus customization processes is 3 days and system 2 with five days delays required additional 2 more days to complete the remaining 3 tasks. In order to compare the stability of these support systems, Fig. 9 shows the percentage of degradation in the performance of the four systems from transportation delay to misplace items.
[image: image3.png]900

Percentage of Degradation
b N ow R o N o
588583328
8888828838

o

/

/A

——Typel
—IMA
—4—Type2(3Days)

o

N

Basic

Focus

Full

Type2(5Days)

Types of Customization Processes

Fig. 9. Percentage of Degradation
[image: image4.png]Systems. Wean Rank | Sum of Ranks
Tasks 3.00 20 1050 210,00
400 2 3050 610.00

Total

(a)
[image: image5.png]Tasks

Wann-Whitney U
Wilcoxon W

z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-talled
sig)

000
210,000
6245
000

000"

(b)

Fig. 10 Mann-Whitney U Test between IIMA and System 2 (with 3 Days Delay): (a) Average Rank (b) Test Statistic.
As the customization processes increase, the performance of system 1 degraded the worst compared to the other three systems with the percentage ranges between the 400 to 800 percent. Conversely, system 2 with five days delays performed well in the basic customization processes but degraded in the ranges of 200 to 400 as the number of required processes increased. However, system two with three days delays only began to degrade in the last type customization with the highest number of customization processes at 200 percent. Fig. 10 demonstrates the IIMA significantly performed better than the system 2 with the three days delays using the Mann Whitney Test with small p value less than 0.05. The two independent samples used in the test are from the recorded number of completed processes in the full-fledge customization processes.
6
Conclusions
The collaboration algorithms run the intermediary processes silently in the background. In the simulation, the intermediary processes had been proven to support the customization processes by reacting accordingly to common problems. These problems are the cause for unmet demands and for the additional costs incurred to recover from the deviated the ongoing shared processes. The collaboration algorithms provide the group with the capability to continuously monitor their shared processes at different locations by manipulating the data retrieved from the readers into process related information. This capability is provided in the form of RFID services to the IIMA and the performance of system 2 had deteriorated especially with the 5 days delay.

 Another important ability provided by the collaboration algorithm is to assist the management team in restructuring the alternative processes in order to overcome the problems. First of all, the functionalities of the existing supply chain systems are wrapped and advertise as services to the IIMA. Next, the IIMA provide the platform for management team to mix RFID services and supply chain services (which comprised of the functionalities from the existing supply chain systems) to resolve the problem and still meet the client demands. Because the support models used to determine the problems, make recommendation on alternative solutions and validate process constraints are implemented in XML documents, other supply chain activities can be supported with amendment to the existing support models.
References:

[1] Bowersox, D.J., Closs, D.J., and Drayer, R.W., The digital transformation: Technology and beyond, Supply Chain Management Review, Vol. 9, No. 1, 2005, pp. 22-29.
[2] Cheng, J.C., Law, K.H., Bjornsson, H., Jones, A., Sriram, R, A service oriented framework for construction supply chain integration. Automation in Construction, Vol. 19, No. 2, 2010, pp. 245-260.

[3] Cheung, C.F., Cheung, C.M., and Kwok, S.K., A knowledge-based customization system for supply chain integration, Expert System with Application, Vol. 39, 2012, pp. 3906-3924.
[4] Delen, D., Hardgrave, B.C., and Sharda, R., RFID for better supply chain management through enhanced information visibility, Production and Operation Management, Vol. 16, No. 5, 2007, pp. 613-624
[5] Gadde, L., and Hulthen, K., Improving logistics outsourcing through increasing buyer-provider interaction, Industrial Marketing Management, Vol. 38, No. 6, 2008, pp. 633-640.
[6] Huang, Y., Williams, B.C., and Zheng, L., Reactive, model-based monitoring in RFID-enabled manufacturing”, Computer in Industry, Vol. 62, 2011, pp. 811-819.
[7] Kim, D.S., Process chain: A new paradigm of collaborative commerce and synchronized supply chain, Business Horizons, Vol. 49, 2006, pp. 359-367.
[8] Lusch, R.F., Vargo, S.L., and O’Brien, M., Competing through service: Insight from service-dominant logic, Journal of Retailing, Vol. 1, No. 83, 2007, pp. 5-18
Variables:

LD	List of Data

LE 	List of Events

LI	List of Instructions

LT	List of Transactions

LP	List of Problems

LOR	List of Results

LC	List of Cases

LER	List of Entities Relationships

LSS	List of Schedule Services

LTM 	List of Team Members

LFM	List of Flagged Members

Sub Components:

ri	Reader Interface

rp	RFID Provider

evm	Event Manager

exm	Execution Manager

ci	Case Interface

pm	Process Manager

cmg 	Case Manager

Variables: socket, LE, LOR, LD, memberNum, loc, op

while(true):

 try :

 Socket socket = rfidServer.accept();

 SubSystem(socket);

SubSystem:

LOR = rpObj.getCurLink();

if (LOR != memberNum), then:

 LOR = spObj.writeLink(memberNum);

else:

 LE = riObj.startMonitor(socket);

RFID Service Provider:

for (int i=0; i<LD.getSize(); i++):

 loc = findLoc(readBean.getReaderID(LD.get(i)));

 op = findOp(loc);

 LE = createEvent(readBean, loc, op);

Variables: LE, LOR, LP, LT, clientMain, pw, hostName, portNum

SubSystem:

while(curEvent == false):

 LOR = evmObj.detDeviation(LE);

 if (LOR == true), then:

 clientMain = new Socket(hostName, portNum);

 pw = new PrintWriter(clientMain.getOutputStream());

 pw.println(LP);

 else:

 evmObj.insertEv(LE);

Service Handler:

for (int i=0; i<LE.getSize(); i++):

 if (LE.getLoc()==LI.getLoc()&&

 LT.getLoc()==LT.getLoc()), then:

 LOR =True;

 else:

 LOR = False;

Variables: socket, mainServer, LP, LC, LSS, LOR, LTM, LFM

while(true):

try :

Socket socket = mainServer.accept();

MainSystem(socket);

MainSystem:

LC = ciObj.initiateChange(LP);

SubSystem(Running in Parallel):

for (int i=0; i<LSS; i++):

LOR = evmObj.verifyEv(LSS.get(i));

if (LOR == true) , then:

exmObj.prepExec(LSS.get(i));

else:

break;

Service Integrator:

while(LFM==false):

 LC = cmgObj.getAlternative(LP);

 for (int i=0; i<LTM.size(); i++):

 LCtemp = reqAlteration(LTM.getMember(i), LC);

 if (LCtemp == LC), then:

 LFM = true;

 else:

 LFM = false;

Variables: LC, LOR, LKD

MainSystem:

while(LOR == false):

// loop is located before entering the alteration phase

LOR = ciObj.verifyCase(LC);

Information Handler:

infoDoc = docBuild.parse(in);

LER = getRelationships(LC);

xPath = navigateModel(LER);

nIterate = XPathAPI.selectNodeIterator(infoDoc,xPath);

nPoint = nIterator.nextNode();

val = nPoint.getFirstChild().getNodeValue();

Variables: C, LC, LCpartial, probIndex, LSS, refNum, memberNum, LOR

MainSystem:

LSS.remove(probIndex);

 for (int i=probIndex+1; i<LSS; i++) :

 LC.add(LSS.get(i));

while(LC != null):

 for (int j=0; j<LC; j++) :

 if(j=0), then:

 C = LC.get(j);

 refNum = C.getMemberNum();

 LCpartial = LC.get(j);

 else:

 C = LC.get(j);

 memberNum = C.getMemberNum();

 if (memberNum == refNum), then:

 LCpartial = LC.get(j);

 LC.remove(j);

 pmObj.execPartialCase(LCpartial);

 while(LOR==false):

 LOR = evmObj.verifyPartialCase(LCpartial);

