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Abstract—In this paper, a new reliable modification of the 

homotopy perturbation method (HPM) is introduced and 

applied to the differential and integral equations. A 

comparative study between the modified homotopy method 

(MHPM) and the standard HPM is conducted. The efficiency 

of the modified technique is examined by several illustrative 

examples. In all cases of differential and integral equations, 

the modified HPM yields the exact solutions in two iterations 

only. 

Keywords: Homotopy-perturbation method, differential 

equations, integral equations  

I.  INTRODUCTION  

There exists a wide body of literature dealing with the 

problem in frontier science and engineering is the physically 

correct solution of linear or nonlinear problems modeled by 

ordinary differential equations (ODEs) or partial differential 

equations (PDEs) subject to general initial or boundary 

conditions. Finding accurate and efficient methods for solving 

nonlinear ODEs or PDEs has long been an active research 

undertaking. Recently, Wazwaz [1] proposed a new 

modification of the Adomian decomposition method (ADM) 

to handle the ODEs and integral differential equations. Very 

recently, Belal et al. [2] obtained exact solutions of the 

nonlinear systems of PDEs studied directly via VIM.  

In recent years, much attention has been devoted to the study 

of the homotopy-perturbation method (HPM) [3-10] for 

solving a wide range of problems whose mathematical models 

yield differential equation or system of differential equations. 

HPM deforms a difficult problem into a set of problems which 

are easier to solve without any need to transform nonlinear 

terms. The applications of HPM in nonlinear problems have 

been demonstrated by many researchers, cf. [11-14]. Recently, 

HPM was employed for solving singular second-order 

differential equations [15], nonlinear population dynamics 

models [16] and time-dependent Emden-Fowler type 

equations [17], the Klein-Gordon and sine-Gordon equations 

[18]. Very recently, Chowdhury et al. [19] were the first to 

successfully apply the multistage homotopy-perturbation 

method (MHPM) to the chaotic Lorenz system and Odibat 

[20] propose a new modification of the HPM for linear and 

nonlinear operators.  

The aim of this work is to present an alternative approach 

called modified HPM based on standard HPM for finding 

series solutions to linear and nonlinear differential and integral 

equations. The efficiency and accuracy of HPM and modified 

HPM are demonstrated through several test examples. 
 

II. MODIFIED TECHNOQUE DESCRIPTION  

Homotopy-pertuebation method (HPM) is a novel and 

effective method, and can solve various nonlinear problems. 

The basic ideas of this method can be found some of He’s 

papers [7-14]. In this section, we shall introduce a new reliable 

procedure for choosing the initial approximations in HPM to 

handle linear, nonlinear inhomogeneous differential equations 

and integral equations. To do so, we consider the following 

general nonlinear differential equation 

 

           
Lu Ru Nu g(x),+ + =                                    (1) 

where L is the highest order derivative which is assumed to be 

easily invertible, R the linear differential operator of order less 

than L,  Nu represents the nonlinear terms, and g is the source 

term. 

According to the HPM, we construct a homotopy of  Eq. (1)  

which satisfies 

              
0 0( , ) ( ) ( ) ( )

[ ( ) ( ) ( )] 0,

H u p L u L v pL v

p R u N u g x

= − +

+ + − =
        (2) 

where p∈[0,1] is an embedding parameter and 
0 0u v=

 
is an 

initial approximation which satisfies boundary conditions. 

When we put 0p =  and 1p =  in Eq. (2), we get 
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        0( , 0) ( ) ( ) 0 andH u L u L v= − =
                                   (3)                 

( ,1) ( ) 0,H u Lu Ru Nu g x= + + − =    (3) 

which are the linear and nonlinear original equations 

respectively. In topology this called deformation and 

0( ) ( )L u L u− ) and Lu Ru Nu g(x)+ + −  are called homotopic. 

Supposing the solution of  (1) can be expressed as  

 

            

0

2 3

0 1 2 3

( )

( ) ( ) ( ) ( ) .

n

n

n

u x p u

u x pu x p u x p u x

∞

=

=

= + + + +

∑

⋯     

(4) 

According to HPM, the approximate solution of Eq. (4) can be 

expressed as a series of the power of p, i.e., 

 

               
0 1 2 3

1
lim .
p

u u u u u u
→

= = + + + ⋯         (5) 

The series (5) is convergent in most of the cases. However the 

rate of convergence depends on L(u) [9]. 

Now we substitute (4) into (2) and equating the like terms of 

p, we obtain 

( )1

0 ( ) ( ( )) ( )u x L g x x f x−= + φ =                                     

( ) ( )

( ) ( )

1 1 1

1

1 1

: ( )

, 0,

k

k k k

k k

p u x L Ru L Nu

L Ru L H k

+ − −

+

− −

= − −

= − − ≥               (6)
 

where the function f (x) represents the terms arising from 

integrating the source term g(x) and from using the given 

conditions, ( )xφ , all of which are assumed to be prescribed. 

The nonlinear term 
kNu  = F(u)  is usually represented by an 

infinite series of the so-called He’s polynomials {Gorbani}, 

0

( ) k

k

F u H
∞

=

=∑ . 

The polynomials 
kH are generated for all kinds of nonlinearity 

so that 
0A depends only on 

0u , 
1A  depends on 

0u and 
1u , and 

so on. The He’s polynomial ( )
10 2, , , ,k kA u u u u⋯  [21], is 

given by, 

0

0

1

!

k k
i

k i pk
i

d
H N p u

k dp
=

=

  
=   

  
∑  

 

The modification: Inspired by Wazwaz [1], we introduce an 

alternative way of choosing the initial approximations, that is 

           
( )1

0v L (g(x)) x f (x)−= + φ = .                     (7) 

The modified form is based on the assumption that the initial 

approximation 0v
 
given in Eq. (7) can be decomposed into 

two parts, namely 0f and 1f  such that 

0 1f f f .= +  

Based on this, we suggest slight variation in the standard HPM 

on the components 0u  and 1u .  The suggestion is that only the 

part 0f be combined with the component 0u  and 1f be added 

with 1u .  Under this assumption we obtained Eqn. (6) as 

follows 

0 0( ) ( )u x f x=
 

( ) ( )1 1 1

1 1 0 0
:p u f L Ru L Nu− −= − −

          
( ) ( )2 1 1

2 1 1
: ( )k

k k k
p u x L Ru L Nu+ − −

+ + += − −
              (8) 

( ) ( )1 1

1 1
, 0.

k k
L Ru L H k− −

+ += − − ≥               

We show that the zeroth component 
ou  in the recursive 

scheme of the standard HPM (6) is defined by the total 

function f (x), but in recursive scheme (8) of the modified 

HPM the zeroth component 
ou  is defined only by a part f0(x) 

of  f (x). And the remaining part f1(x) of f (x) is added to the 
component u1 in (8). The small difference of reducing the 

number of terms of 0u  could reduce the computational work. 

Furthermore, because of the dependence of the He’s 

polynomials on the initial component 0u
 
in the nonlinear 

equations, the reduction of terms in 0u  could reduce 

calculations. Additional, this small difference in the 

components 0u  and 1u  may give the exact solution by using 

two iterations only. However, the success of the MHPM 

depends completely on the correct selection of the function f0 

and f1 , here the trials are the only technique that can be used. 

III. APPLICATIONS 

 In order to assess both the applicability and the accuracy of 

the modified procedure described above, some test examples 

are considered for linear, nonlinear inhomogeneous 

differential equations and integral equations. 

 

Example 1 

 
First we consider the ordinary differential equation 

du
u x cos x x sin x sin x, u(0) 0

dx
− = − + =                  (7) 

Standard HPM: We construct a homotopy which satisfies the 

following relation  

0 0( )
( ( ) cos

sin sin ) 0.

dv dvdu x
p u x x x

dx dx dx

x x x

− + − −

+ − =

 

The iterative formula based on (6) is given by 

0
0

( ) ( cos sin sin )

sin cos sin

x

u x x x x x x dx

x x x x x

= − +

= + −

∫
 

1
0

( ) ( sin cos sin )

cos sin sin 2 cos 2

x

u x x x x x x dx

x x x x x x

= + −

= − + + + −

∫
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2
0

( ) ( cos sin sin 2 cos 2)

sin 2 cos cos 3sin 2 2,

x

u x x x x x x x dx

x x x x x x x

= − + + + −

= − − − + − +

∫

3
0

2

( ) ( sin 2 cos cos 3sin

2 2) 4 2 3sin cos

4 cos sin ,

x

u x x x x x x x

x dx x x x x x

x x x

= − − − + −

+ = + − − +

− −

∫

 

2

2

4
0

3

( ) (4 2 3sin cos

4 cos sin )

1
4 4 5 sin cos

3

4 cos sin ,

x

u x x x x x x

x x x dx

x x x x x x

x x x

= + − − +

− −

= − + + − − +

+ +

∫

 

etc. Hence the 4-term approximate series solution is 

31
( ) 4 5 sin cos sin

3
u x x x x x x x x= − + − + +

 

and this will be needed more terms to yield the close-form 

solution. However, we see that the noise terms cosx x  and 

sin x−  in u0 will appear in u1 with opposite signs and the 

remaining noise terms in u1 will be appeared also in u2 with 

opposite signs and so on. Therefore proceeding in this way by 

cancelling these noise terms from series solution and this will 

in the limit of infinitely many terms gives remaining non-

canceled term of u0 as close-form solution. i.e.            

0 sin .u x x=                                                                                   

From the above solution it is obvious that the noise terms 

made a remarkable effect in the convergence of the solution. 

 

The modified HPM: To apply the modified HPM, let us take, 

0 0 1v f f f= = + , where 
0 sinf x x=  and 

1 cos sin .f x x x= −  

The iterative formula based on (8) we obtain, 

0 ( ) sin ,u x x x=
 

      

1

1
0

: ( ) cos sin sin

cos sin cos sin 0,

x

p u x x x x x x dx

x x x x x x

= − −

= − − + =

∫

  

 (8) 

2

2: ( ) 0, 0.
k

k
p u x k

+

+ = ≥
 

Hence, by using only two iterations the exact solution is 

reached,  

( ) sin .u x x x=
 

 

Example 2  
 

Consider the nonhomogeneous advection partial differential 

equations [1] 

  

2 , ( , 0) 0.
u u

u x xt u x
t x

∂ ∂
+ = + =

∂ ∂  

          (9) 

Standard HPM: Now we construct a homotopy which 

satisfies the following relation:  

20 0 0.
v vu u

p u x xt
t t t x

∂ ∂ ∂ ∂
− + + − − = ∂ ∂ ∂ ∂ 

 

According to iterative formula (6), we obtain 

2 3

0
0

1
( , ) ( ) ,

3

t

u x t x xt dt xt xt= + = +∫  

( )

( )

1 0 0
0

2

0
0

7 5 3

( , ) ( )

1

2

1 2 1
xt - xt - xt

63 15 3

t

x

t

x

u x t u u dt

u dt

= −

= −

= −

∫

∫  

( )2

2 1
0

5 13 11

9 7

1
( , )

2

1 4 134

59535 12285 51975

4 1
,

405 63

t

x
u x t u dt

xt xt xt

xt xt

= −

= − − −

− −

∫

 

 

 and so on.  This will be needed more terms to yields the 

close-form solutions. 

However, we see that the noise terms 
31

3
xt  in 

0u will appear 

in 
1u  with opposite signs and so on. Therefore proceeding in 

this way by cancelling these noise terms from series solution 

and this will in the limit of infinitely many terms gives 
remaining non-canceled term of  u0 as close-form solution. i.e.  

( , )u x t xt=  with non-canceled  noise terms.    

 

The modified HPM: To apply the modified HPM, let us take, 

0 0 1v f f f= = + , where
0f xt=  and 3

1

1
.

3
f xt=

 

The iterative formula based on (8) we obtain, 

0 ( , ) ,u x t xt=
 

( )1 3 2

1 0
0

1 1
: ( , ) 0,

3 2

t

x

p u x t xt u dt= − =∫
 2

2
: ( , ) 0, 0.

k

k
p u x t k

+

+ = ≥  

Hence, by using only two iterations the exact solution is 

reached,  

( , ) .u x t xt=  

Example 3 
 

Finally, we consider the nonhomogeneous Fredholm integral 

equation 
1

1

0
( ) cos ( ) .u x x x xu t dt−= − + ∫  

Standard HPM: Now we construct a homotopy which 

satisfies the following relation:  
1

1

0 0
0

cos ( ) 0.u v p v x x xu t dt
− − + − + + =

  ∫  

According to iterative formula (6), we obtain 
1

0 0( ) cos ,u x v x x
−= = −  

( )1

1 0
0 0

1
( ) ( ) cos ,

2

t t

u x xu t dt x t t dt x
−= = − =∫ ∫
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2 1
0

1
( ) ( ) ,

4

t

u x xu t dt x= =∫
 

3 2
0

1
( ) ( ) ,

8

t

u x xu t dt x= =∫
 

4 3
0

1
( ) ( ) ,

16

t

u x xu t dt x= =∫
 

5 4
0

1
( ) ( ) ,

32

t

u x xu t dt x= =∫  

and so on. 

Hence the series solution can be written as 

1 1 1 1 1 1
( ) cos 1 .

2 2 4 8 16
u x x x x

−  
= − + + + + + + 

 
⋯  

The modified HPM: To apply the modified HPM, let us take, 

0 0 1v f f f= = + , where 1

0 cosf x
−=  and 1 .f x= −

 
The iterative formula based on (8) we obtain, 

1

0 ( ) cos ,u x x
−=

 
1

1

1 0
0

: ( ) ( ) 0,p u x x x u t dt= − + =∫
 2

2
: ( ) 0, 0.

k

k
p u x k

+

+ = ≥  

Hence, by using only two iterations the exact solution is 

reached,  
1( ) cos .u x x

−=  

 

IV. CONCLUSION 

In this paper, we first proposed a reliable modification to the 

homotopy-perturbation method (HPM) by introducing a new 

technique to choose initial component that already reduced the 

computational work and accelerates the rapid convergence of 

the HPM series solution. We have chosen two examples from 

differential equations and one example from integral 

equations. From the test examples, we see that the new 

modification of the HPM provided exact solution by using 

only two terms in series solution. However in the standard 

HPM the noise terms will appear in the series solutions and 

will be needed infinitely many terms to get the close form 

solution. It can be concluded that the new modification of 

HPM is a promising tool for solving linear-nonlinear 

differential and integral equations. 
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