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Abstract. The concept of splicing system was first introduced by Head in 1987. This model 

has been introduced to investigate the recombinant behavior of DNA molecules. Over the years, 

various types of splicing languages have been defined and studied by different mathematicians. 

Splicing systems with finite sets of axioms only generate regular languages. Therefore, different 

restrictions have been considered to increase the computational power up to the recursively 

enumerable languages. In this research, a variant of splicing systems called probabilistic splicing 

systems has been used to define different types of splicing systems such as probabilistic simple 

splicing systems, probabilistic semi-simple splicing systems and probabilistic one-sided splicing 

systems. In probabilistic splicing systems, probabilities (real numbers in the range of 0 and 1) are 

associated with the axioms, and the probability p(z)of the string z generated from two strings x 

and y is calculated from the probability p(x)and p(y)according to the operation *(multiplication) 

defined on the probabilities, i.e., p(z) = p(x) * p(y). 

KeywordsDNA computing; probabilistic splicing systems; splicing languages; regular languages 

 

Abstrak. Konsep sistem hiris-cantum mula diperkenalkan oleh Head pada tahun 1987. Model ini 

telah diperkenalkan untuk menyiasat penggabungan semula molekul-molekul DNA. Pelbagai jenis 

bahasa hiris-cantum telah ditakrifkan dan dikaji oleh ahli-ahli matematik. Sistem hiris-cantum dengan 

setaksiom terhingga hanya menjana bahasa biasa. Oleh itu, batasan yang berbeza telah digunakan 

untuk meningkatkan kuasa pengkomputeran sehingga ke bahasa rekursif enumerable. Dalam kertas 

kerja ini, satu variasi sistem hiris-cantum yang dinamakan sistem hiris-cantum berkebarangkalian 

telah digunakan untuk mentakrifkan jenis-jenis sistem hiris-cantum seperti sistem hiris-cantum mudah 

berkebarangkalian, sistem hiris-cantum separuh-mudah berkebarangkalian dan sistemhiris-cantums 

atu-sis berkebarangkalian. Dalam sistem hiris-cantum berkebarangkalian, kebarangkalian (nombor 

nyata dalam julat 0 dan 1) dikaitkan dengan aksiom. Kebarangkalian p(z)pada jujukan z yang dijana 

daripada dua jujukan x dan y dikira dari kebarangkalian p(x)dan p(y)menggunakan operasi *dimana 

kebarangkalian,  p(z) =p(x)*p(y). 

 
Kata kunciDNApengkomputeran; sistemhiris-cantumkebarangkalian; bahasahiris-cantum; 

bahasabiasa 
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1.0 INTRODUCTION 

 

The concept of splicing system was first introduced by Head in 1987. This model 

has been defined to investigate the recombinant behavior of DNA molecules in 

the presence of restriction enzymes and ligases.DNA is the genetic material of 

organisms in a chain of nucleotides. The nucleotides differ by their chemical 

bases that are adenine (A), guanine (G), cytosine (C), and thymine (T). The 

origin of splicing system is associated with the modeling of a biological problem 

that is related to DNA molecules and restriction enzymes [1]. DNA bases pair up 

with each other,A with T and C with G, to form units called base pairs. So, 

nucleotides can be arranged in two long strands that form a spiral called a double 

helix. The structure of the double helix is somewhat like a ladder.  

 

DNA can be represented as strings over four alphabets, i.e. D ={[A / T 

],[C / G],[G / C],[T / A]}. Restriction enzymes, found naturally in bacteria, can 

cut DNA fragment at specific sequences, known as restriction sites; while 

another enzyme, ligase, can rejoin DNA fragments that have complementary 

ends. This recombination behavior of restriction enzymes and ligases was 

modeled in the form of splicing systems and splicing languages by Head [2]. 

 

Later, various types of splicing languages were defined and studied by 

different mathematicians.Since splicing systems with finite sets of axioms and 

rules generate only regular languages [3], several restrictions in the use of rules 

have been considered, which increase the computational power up to the 

recursively enumerable languages. This is important from the point of view of 

DNA computing: splicing systems with restrictions can be considered as 

theoretical models of universal programmable DNA based computers.Different 

problems appearing in computer science areas motivate to consider suitable 

models for the solution of the problems.  

 

In this research, we consider probabilistic splicing systems to introduce a 

new variant of splicing system [4], called probabilistic semi-simple splicing 

systems. In such system, probabilities (real numbers in the range [0, 1]) are 

associated with the axioms, and the probability p(z) of the string z generated 

from two stringsx and y is calculated from the probability p(x) and p(y) according 

to the operation * defined on the probabilities, i.e., p(z) = p(x) * p(y). Then the 

language generated by a probabilistic semi-simple splicing system consists of all 

strings generated by the semi-simple splicing systems whose probabilities are 

greater than (or smaller than, or equal to) some previously chosen cut-points. 
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This paper is organized as follows. Section 2 contains some necessary 

definitions from formal language theory, DNA computing and probabilistic 

splicing systems. The concept of probabilistic semi-simple splicing systems is 

introduced in Section 3. In section 3, we also establish some basic results 

concerning the generative power of probabilistic semi-simple splicing systems. 

In Section 4, we indicate some possible topics for future research in this 

direction. 

 

 

2.0 PRELIMINARIES 

 

In this section, the main concepts and notations that will be used in this paper are 

introduced. The theoretical basis of splicing system is under the framework of 

formal language theory that is mainly the study of finite sets of strings called 

languages. 

  

Throughout the paper we use the following general notations. The 

symbol ∈ denotes the membership of an element to a set while the negation of 

set membership is denoted by ∉. The inclusion is denoted by⊆ and the strict 

(proper) inclusion is denoted by ⊂. ∅denotes the empty set. The sets of integers, 

positive rational numbers and real numbers are denoted by ℤ , ℚ+  and ℝ , 

respectively. The cardinality of a set X is denoted by |X|. 

 

Definiton1.[5] Alphabet  

 

A finite, nonempty set Aof symbols is called alphabet. Any finite sequence of 

symbols from alphabet is called a string.We use 1 to denote the empty string 

which is a string with no symbols at all. 

If Ais an alphabet, we use A* to denote the set of strings obtained by 

concatenating zero or more symbols from A. 

 

Definition 2. [5] Language 

 

A formal languageL over an alphabet Σ is a subset of Σ
*
, that is, a set of 

wordsover that alphabet. 

The families of languages generated by phrase structure, context-sensitive, 

context-free, linear and regular grammars are denoted by RE, CS, CF, LIN, 

REG, respectively. Further we denote the family of finite languages by FIN. The 

next strict inclusions, named Chomsky hierarchy, holds: 

 

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE. 

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Formal_language#Words_over_an_alphabet
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Definition 3. [2] Splicing System 

 

Let V be an alphabet, and #, $ ∉ 𝑉two special symbols. A splicing rule over V is 

a string of the form 

𝑟 = 𝑢1#𝑢2$𝑢3#𝑢4,where𝑢𝑖 ∈ 𝑉∗, 1 ≤ 𝑖 ≤ 4. 
For such a rule r and strings 𝑥, 𝑦, 𝑧 ∈ 𝑉∗,we write 

(𝑥, 𝑦) ⊢𝑟 𝑧iff𝑥 =  𝑥1𝑢1𝑢2𝑥2 , 𝑦 = 𝑦1𝑢3𝑢4𝑦2,and 𝑧 =  𝑥1𝑢1𝑢4𝑦2, 
for some 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑉∗. 

We say that 𝑧 is obtained by splicing 𝑥, 𝑦, as indicated by the rule 𝑟; 𝑢1𝑢2and 

𝑢3𝑢4 are called the sites of the splicing. We call 𝑥the first term and 𝑦the second 

term of the splicing operation. When understood from the context, we omit the 

specification of 𝑟 and we write ⊢instead of⊢𝑟 .  

 

An H scheme is a pair 𝜎 = (𝑉, 𝑅) where 𝑉 is an alphabet and 𝑅 ⊆
𝑉∗#𝑉∗$𝑉∗#𝑉∗is a set of splicing rules. 

 

For a given H scheme  𝜎 = (𝑉, 𝑅)and a language 𝐿 ⊆ 𝑉∗,we define 

 

𝜎 𝐿 = {𝑧 ∈ 𝑉∗| 𝑥, 𝑦 ⊢𝑟 𝑧,for some 𝑥, 𝑦 ∈ 𝐿, 𝑟 ∈ 𝑅}, 
𝜎0 𝐿 = 𝐿, 

𝜎𝑖+1 𝐿 = 𝜎𝑖 𝐿 ∪ 𝜎  𝜎𝑖 𝐿  , 𝑖 ≥ 0, 

𝜎∗ 𝐿 =  𝜎𝑖(𝐿)

𝑖≥0

. 

 

An extended H system is a construct 𝛾 = (𝑉, 𝑇, 𝐴, 𝑅) where 𝑉  is an alphabet, 

𝑇 ⊆ 𝑉 is the terminal alphabet, 𝐴 ⊆ 𝑉∗ is the set of axioms, and 𝑅 ⊆
𝑉∗#𝑉∗$𝑉∗#𝑉∗is the set of splicing rules. When𝑇 = 𝑉, the system is said to be 

non-extended. The language generated by 𝛾is defined by 

 

𝐿 𝛾 = 𝜎∗ 𝐴 ∩ 𝑇∗. 
 

Here, EH(𝐹1, 𝐹2 ) denotes the family of languages generated by extended H 

systems 𝛾 = (𝑉, 𝑇, 𝐴, 𝑅)with𝐴 ∈ 𝐹1and𝑅 ∈ 𝐹2 where 

 

 𝐹1, 𝐹2 ∈ {FIN, REG, CF, LIN, CS, RE}. 
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Theorem 1 [2] 

 

The relations in the following table hold, where at the intersection of the row 

marked with 𝐹1with the column marked with 𝐹2 there appear either the family 

EH(𝐹1, 𝐹2)or two families 𝐹3 , 𝐹4such that 𝐹3 ⊂ EH(𝐹1, 𝐹2) ⊆ 𝐹4. 

 

 FIN REG CF LIN CS RE 

FIN REG RE RE RE RE RE 

REG REG RE RE RE RE RE 

CF LIN, CF RE RE RE RE RE 

LIN CF RE RE RE RE RE 

CS RE RE RE RE RE RE 

RE RE RE RE RE RE RE 

 

 

Definition 4. [6] Semi-Simple Splicing System 

 

Asemi- simple H system is a triple 

 

𝐺 =  𝑉, 𝑀, 𝐴 , 
 

where𝑉is an alphabet,𝑀 ⊆ 𝑉,and 𝐴is a finite language over 𝑉. The elements of 

𝑀are called markers and those of 𝐴are called axioms. 

 

 

Definition 5. [4] Probabilistic Splicing System 

 

A probabilistic H (splicing) system is a 5-tuple 𝛾 = (𝑉, 𝑇, 𝐴, 𝑅, 𝑝) where 𝑉, 𝑇, 𝑅 

are defined as for a usual extended H system, 𝑝: 𝑉∗ ⟶ [0,1] is a probability 

function, and 𝐴 is a finite subset of 𝑉+ × [0,1] such that  

 

 𝑝 𝑥 = 1(𝑥,𝑝 𝑥 )∈𝐴 . 

 

 

Definition 6. [7] Threshold point  

 

We consider as thresholds (cut-points) sub segments and discrete subsets of [0, 

1] as well as real numbers in [0,1]. We define the following two types of 

threshold languages with respect to thresholdsΩ ⊆ [0,1] and 𝜔 ∈  0,1 : 
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𝐿𝑝 𝛾,∗ 𝜔 =  𝑧 ∈ 𝑇∗  𝑧, 𝑝 𝑧  ∈ 𝜎∗ 𝐴 ∧ 𝑝 𝑧 ∗ 𝜔 , 

   
𝐿𝑝 𝛾,⋆ Ω =  𝑧 ∈ 𝑇∗  𝑧, 𝑝 𝑧  ∈ 𝜎∗ 𝐴 ∧ 𝑝 𝑧 ⋆ Ω , 

 

where∗∈  =, ≠, ≥, >, <, ≤ and ⋆∈   ∈, ∉ are called threshold modes. 

 

 

 

3.0 RESULTS ON PROBABILISTIC SEMI-SIMPLE SPLICING 

SYSTEM 
 

 

In this section we introduce the notion of probabilistic semi-simple splicing 

systems which is specified with a probability space and operations over 

probabilities closed in the probability space. 

 

 

Definition 7 : Probabilistic Semi-Simple Splicing System 

 

A probabilistic semi-simple splicing system (𝑝𝑆𝑆𝐸𝐻)  is a 4-tuple 𝛾 =
(𝑉, 𝐴, 𝑅, 𝑝) where V is defined as for a usual extended  H system, R is the rule in 

the form  𝑎, 1; 𝑏, 1  for 𝑎, 𝑏 ∈ 𝐴 , p is a probabilistic function defined by 

𝑝 ∶ 𝑉∗  → [0, 1], and A is a subset of  𝑉∗  × [0, 1] such that 

   

 𝑝 𝑥 = 1.

(𝑥,𝑝 𝑥 )∈𝐴

 

 

Further we define a probabilistic semi-simple splicing operation and the 

language generated by a probabilistic semi-simple splicing system. 

 

 

Definition  8 :Probabilistic Semi-Simple Splicing System Operation 

 

For strings  𝑥, 𝑝 𝑥  ,  𝑦, 𝑝 𝑦  ,  𝑧, 𝑝 𝑧  ∈  𝑉∗ × [0, 1], and 𝑟 ∈ 𝑅, 

  

    𝑥, 𝑝 𝑥  ,  𝑦, 𝑝 𝑦    ⊢𝑟  (𝑧, 𝑝 𝑧 ) 

 

if and only if  𝑥, 𝑦  ⊢𝑟  𝑧 and 𝑝 𝑧 = 𝑝 𝑥 ∗ 𝑝 𝑦  and 𝑟 = (𝑎, 1; 𝑏, 1) ∈ 𝑅.  
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Definition 9 : Probabilistic Semi-Simple Splicing System Language 

 

The language generated by the semi-simple splicing system 𝛾 is defined as  

 

  𝐿 𝛾 =   𝑧 𝜖𝑇∗  𝑧, 𝑝 𝑧  𝜖 𝜎∗(𝐴)}. 
 

Remark 1. We should mention that splicing operations may result in the same 

string with different probabilities. Since, in this paper, we focus on strings whose 

probabilities satisfy some threshold requirements, i.e., the probabilities are 

merely used for the selection of some strings, this ‘ambiguity’ does not effect on 

the selection. When we investigate the properties connected with the 

probabilities of the strings, we can define another operation together with the 

multiplication, for instance, the addition over the probabilities of the same 

strings, which removes the ambiguity problem. 

 

Let 𝐿 𝛾  be the language generated by a probabilistic semi-simple 

splicing system 𝛾 = (𝑉, 𝐴, 𝑅, 𝑝) .We consider as thresholds (cut-points) sub-

segments and discrete subsets of [0, 1] as well as real numbers in [0,1]. We 

define the following two types of threshold languages with respect to thresholds 

Ω ⊆ [0,1] and 𝜔 ∈  0,1  
 

𝐿𝑝 𝛾,∗ 𝜔 =  𝑧 ∈ 𝑇∗  𝑧, 𝑝 𝑧  ∈ 𝜎∗ 𝐴 ∧ 𝑝 𝑧 ∗ 𝜔 , 

   
𝐿𝑝 𝛾,⋆ Ω =  𝑧 ∈ 𝑇∗  𝑧, 𝑝 𝑧  ∈ 𝜎∗ 𝐴 ∧ 𝑝 𝑧 ⋆ Ω , 

 

where∗∈  =, ≠, ≥, >, <, ≤ and ⋆∈   ∈, ∉ are called threshold modes. 

We denote the family of languages generated by multiplicative probabilistic 

semi-simple splicing system of type (𝐹1, 𝐹2) by 𝑝𝑆𝑆𝐸𝐻(𝐹1, 𝐹2) where  

 

𝐹1, 𝐹2 ∈  𝐹𝐼𝑁, 𝑅𝐸𝐺, 𝐶𝐹, 𝐿𝐼𝑁, 𝐶𝑆, 𝑅𝐸 . 
 

Remark 2. In this paper we focus on probabilistic semi-simple splicing systems 

with finite set of axioms, since we consider a finite initial distribution of 

probabilities over the set of axioms. Moreover, it is natural in practical point of 

view: only splicing systems with finite components can be chosen as a 

theoretical model for DNA based computation devices. Thus, we use the 

simplified notation 𝑝𝑆𝑆𝐸𝐻(𝐹)of the language family generated by probabilistic 

semi-simple splicing systems with finite set of axioms instead 

of 𝑝𝑆𝑆𝐸𝐻(𝐹1, 𝐹2) where 𝐹 ∈  𝐹𝐼𝑁, 𝑅𝐸𝐺, 𝐶𝐹, 𝐿𝐼𝑁, 𝐶𝑆, 𝑅𝐸 shows the family of 

languages for splicing rules. 
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From the definition, the next lemma follows immediately. 

 

Lemma 1 

𝑆𝑆𝐸𝐻(𝐹𝐼𝑁, 𝐹) ⊆ 𝑝𝑆𝑆𝐸𝐻(𝐹) 
 

for all families 𝐹 ∈  𝐹𝐼𝑁, 𝑅𝐸𝐺, 𝐶𝐹, 𝐿𝐼𝑁, 𝐶𝑆, 𝑅𝐸 . 
 

Proof. 

Let  𝐺 = (𝑉, 𝐴, 𝑅)be a semi-simple splicing system generating the language 

𝐿(𝐺) ∈ 𝑆𝑆𝐸𝐻(𝐹𝐼𝑁, 𝐹)where 𝐹 ∈  𝐹𝐼𝑁, 𝑅𝐸𝐺, 𝐶𝐹, 𝐿𝐼𝑁, 𝐶𝑆, 𝑅𝐸 . 
Let 𝐴 =  𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑛 ≥ 1. We define a probabilistic semi-simple splicing 

system𝐺′ = (𝑉, 𝐴′ , 𝑅, 𝑝) where the set of axioms is defined by 

  𝐴′ = {(𝑥𝑖 , 𝑝 𝑥𝑖 )| 𝑥𝑖 ∈ 𝐴, 1 ≤ 𝑖 ≤ 𝑛} 

where𝑝 𝑥𝑖 =
1

𝑛
 for all 1 ≤ 𝑖 ≤ 𝑛, then 

 𝑝 𝑥𝑖 = 1.

𝑛

𝑖=1

 

 

We define the threshold language generated by 𝐺′as 𝐿𝑝 𝐺 ′ , > 0 , then it is not 

difficult to see that 

𝐿 𝐺 =  𝐿𝑝 𝐺 ′ , > 0 . 

 

Next, two examples are given to illustrate the application of probability to the 

semi-simple splicing system.  

 

 

Example 1 : Consider the semi-simple splicing system 

 

𝐺1 =   𝑎, 𝑏, 𝑐 ,  𝑎, 𝑏, 𝑐 ,  𝑎𝑐𝑎, 𝑎𝑏𝑎, 𝑏𝑎𝑐𝑎, 𝑐𝑎𝑏𝑎 ,  
2

17
,

3

17
,

5

17
,

7

17
  .  

 

We obtain  

𝐿 𝐺1, 𝜂  =   𝑎𝑐𝑛𝑏𝑛𝑎 ,  
6

289
  

35

289
 

𝑛−1

 𝑛 ≥ 1}. 

where 𝜂 =   
6

289
  

35

289
 

𝑛−1

. 

 

The way to obtain the string is by performing the splicing operation using the 

markers to the axioms. 
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Case 1 : Using string 𝑎𝑐𝑎 & 𝑏𝑎𝑐𝑎 

 

i : for the string 𝑎𝑐𝑎, 𝑝 𝑎𝑐𝑎 =
2

17
 and using marker c, 

  𝑎𝑐|𝑎 ,
2

17
  ⊢𝑐   𝑎𝑐 ,

2

17
  , 

 

ii :for the string 𝑏𝑎𝑐𝑎, 𝑝 𝑏𝑎𝑐𝑎 =
5

17
  and using marker a, 

  𝑏𝑎|𝑐𝑎 ,
5

17
 ⊢𝑎   𝑐𝑎 ,

5

17
  , 

 

iii :for the both string 𝑎𝑐𝑎, ( 𝑝 𝑎𝑐𝑎 =
2

17
)&𝑏𝑎𝑐𝑎, ( 𝑝 𝑏𝑎𝑐𝑎 =

5

17
) and using 

the markers a and c, 

  𝑎𝑐  𝑎, (
2

17
)) , (𝑏𝑎 𝑐𝑎,  

5

17
   ⊢𝑐,𝑎   𝑎𝑐𝑐𝑎  ,  

2

17
  

5

17
   , 

 

iv : for the string from (iii) and (ii) i.e. 

𝑎𝑐𝑐𝑎, (𝑝 𝑎𝑐𝑐𝑎 =  
2

17
  

5

17
 )&𝑏𝑎𝑐𝑎, ( 𝑝 𝑏𝑎𝑐𝑎 =

5

17
) and using the same 

markers a and c, 

  𝑎𝑐𝑐 𝑎,  
2

17
  

5

17
  , ( 𝑏𝑎|𝑐𝑎,  

5

17
 ) ⊢𝑐,𝑎  [  𝑎𝑐3𝑎 ,  

2

17
  

5

17
 

2

) , 

 

v : for each new string produce𝑎𝑐𝑛−1𝑎, (𝑝 𝑎𝑐𝑛−1𝑎 =   
2

17
  

5

17
 

𝑛−2

)and 

string (ii)𝑏𝑎𝑐𝑎, ( 𝑝 𝑏𝑎𝑐𝑎 =
5

17
) and using the same markers a and c, 

  𝑎𝑐𝑛−1 𝑎,  
2

17
  

5

17
 

𝑛−2

 , ( 𝑏𝑎|𝑐𝑎,  
5

17
 ) ⊢𝑐,𝑎  [  𝑎𝑐𝑛𝑎 ,  

2

17
  

5

17
 

𝑛−1

)  . 

 

 

Case 2 : Using string  𝑎𝑏𝑎 & 𝑐𝑎𝑏𝑎  
 

i : for the string 𝑎𝑏𝑎, 𝑝 𝑎𝑏𝑎 =
3

17
and using marker b, 

  𝑎𝑏|𝑎 ,
3

17
  ⊢𝑏   𝑎𝑏 ,

3

17
  , 

 

ii :for the string 𝑐𝑎𝑏𝑎, 𝑝 𝑐𝑎𝑏𝑎 =
7

17
 and using marker a, 

  𝑐𝑎|𝑏𝑎 ,
7

17
 ⊢𝑎   𝑏𝑎 ,

7

17
  , 
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iii :for the both string 𝑎𝑏𝑎, (𝑝 𝑎𝑏𝑎 =
3

17
)&𝑐𝑎𝑏𝑎, (𝑝 𝑐𝑎𝑏𝑎 =

7

17
)and using the 

markers a and b, 

  𝑎𝑏  𝑎, (
3

17
)) , (𝑐𝑎 𝑏𝑎,  

7

17
   ⊢𝑏,𝑎   𝑎𝑏𝑏𝑎  ,  

3

17
  

7

17
   , 

 

iv : for the string from (iii) and (ii) i.e. 

𝑎𝑏𝑏𝑎, (𝑝 𝑎𝑏𝑏𝑎 =  
3

17
  

7

17
 )&𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =

7

17
)and using the same 

markers a and c, 

  𝑎𝑏𝑏 𝑎,  
3

17
  

7

17
  , ( 𝑐𝑎|𝑏𝑎,  

7

17
 ) ⊢𝑏,𝑎  [  𝑎𝑏3𝑎 ,  

3

17
  

7

17
 

2

) , 

 

v : for each new string produce𝑎𝑏𝑛−1𝑎, (𝑝 𝑎𝑏𝑛−1𝑎 =   
3

17
  

7

17
 

𝑛−2

)and 

string (ii) 𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =
7

17
)and using the same markers a and b, 

  𝑎𝑏𝑛−1 𝑎,  
3

17
  

7

17
 

𝑛−2

 , ( 𝑐𝑎|𝑏𝑎,  
7

17
 ) ⊢𝑏,𝑎  [  𝑎𝑏𝑛𝑎 ,  

3

17
  

7

17
 

𝑛−1

)  . 

 

 

For the strings from Case 1 [  𝑎𝑐𝑛𝑎 ,  
2

17
  

5

17
 

𝑛−1

) & Case 2  

[  𝑎𝑏𝑛𝑎 ,  
3

17
  

7

17
 

𝑛−1

)  using marker a, 

[(𝑎𝑐𝑛  𝑎 ,  
2

17
  

5

17
 

𝑛−1

 ,  𝑎|𝑏𝑛𝑎 ,  
3

17
  

7

17
 

𝑛−1

 ⊢ 𝑎   𝑎𝑐𝑛𝑏𝑛𝑎 ,  
6

289
  

35

289
 

𝑛−1

 . 

 

 

Therefore, 

 

𝐿 𝐺1, 𝑝1 =   𝑎𝑐𝑘𝑏𝑚𝑎 ,  
6

289
  

5

17
 

𝑘−1

 
7

17
 

𝑚−1

 𝑘, 𝑚 ≥ 1 , 

 

𝑝1 =  
6

289
  

5

17
 

𝑘−1

 
7

17
 

𝑚−1

. 

 

 

 

Using the threshold properties, we can conclude the following: 

 

i :𝜂 = 0, ⇒  𝐿 𝐺1, = 0 =  ∅ ∈ 𝑅𝐸𝐺, 
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ii :𝜂 > 0, ⇒  𝐿 𝐺1, > 0 = 𝐿 𝛾1   ∈ 𝑅𝐸𝐺, 

 

iii :𝜂 =  { 
6

289
  

35

289
 

𝑛−1
  𝑛 ≥ 1 , ⇒ 𝐿 𝐺1, 𝜂  =  𝑎𝑐𝑛𝑏𝑛𝑎  𝑛 ≥ 1 ∈ 𝐶𝐹 − 𝑅𝐸𝐺, 

 

iv :𝜂 ≠  { 
6

289
  

35

289
 

𝑛−1
  𝑛 ≥ 1 , ⇒ 𝐿 𝐺1, 𝜂  =   𝑎𝑐𝑘𝑏𝑚𝑎  𝑘 > 𝑚 ≥ 1 ∪ 

  𝑎𝑐𝑘𝑏𝑚𝑎  𝑚 > 𝑘 ≥ 1 ∈  𝐶𝐹 − 𝑅𝐸𝐺. 
 

 

 

Example 2 : Consider the semi-simple splicing system 

 

𝐺2 =  

 𝑎, 𝑏, 𝑐, 𝑑 ,  𝑎, 𝑏, 𝑐, 𝑑 ,  𝑎𝑏𝑎, 𝑎𝑐𝑎, 𝑎𝑑𝑎, 𝑏𝑎𝑐𝑎, 𝑐𝑎𝑏𝑎, 𝑏𝑎𝑑𝑎 ,

 
2

41
,

3

41
,

5

41
,

7

41
,
11

41
,
13

41
 

 .  

 

We obtain  

𝐿 𝐺2, 𝜂  =   𝑎𝑐𝑛𝑏𝑛𝑑𝑛𝑎 ,  
2.3.5

413   
7.11.13

413  
𝑛−1

 𝑛 ≥ 1}. 

where𝜂 =   
2.3.5

413   
7.11.13

413  
𝑛−1

 

 

The way to obtain the string is by performing the splicing operation using the 

markers to the axioms. 

 

Case 1 : Using string 𝑎𝑐𝑎 & 𝑏𝑎𝑐𝑎  
 

i : for the string 𝑎𝑐𝑎, (𝑝 𝑎𝑐𝑎 =
3

41
) and using marker c, 

  𝑎𝑐|𝑎 ,
3

41
  ⊢𝑐   𝑎𝑐 ,

3

41
  , 

 

ii :for the string 𝑏𝑎𝑐𝑎,   𝑝 𝑏𝑎𝑐𝑎 =
7

41
  and using marker a, 

  𝑏𝑎|𝑐𝑎 ,
7

41
 ⊢𝑎   𝑐𝑎 ,

7

41
  , 

 

iii :for the both string𝑎𝑐𝑎, (𝑝 𝑎𝑐𝑎 =
3

41
)& 𝑏𝑎𝑐𝑎,   𝑝 𝑏𝑎𝑐𝑎 =

7

41
 and using 

the markers a and c, 

  𝑎𝑐  𝑎, (
3

41
)) , (𝑏𝑎 𝑐𝑎,  

7

41
   ⊢𝑐,𝑎   𝑎𝑐𝑐𝑎  ,  

3

41
  

7

41
   , 
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iv : for the string from (iii) and (ii), i.e. 

𝑎𝑐𝑐𝑎, (𝑝 𝑎𝑐𝑐𝑎 =  
3

41
  

7

41
 )&𝑏𝑎𝑐𝑎,   𝑝 𝑏𝑎𝑐𝑎 =

7

41
  and using the same 

markers a and c, 

  𝑎𝑐𝑐 𝑎,  
3

41
  

7

41
  , ( 𝑏𝑎|𝑐𝑎,  

7

41
 ) ⊢𝑐,𝑎  [  𝑎𝑐3𝑎 ,  

3

41
  

7

41
 

2

) , 

 

v : for each new string produce 𝑎𝑐𝑛−1𝑎, (𝑝 𝑎𝑐𝑛−1𝑎 =   
3

41
  

7

41
 

𝑛−2

) and 

string (ii) 𝑏𝑎𝑐𝑎, (𝑝 𝑏𝑎𝑐𝑎 =
7

41
) and using the same markers a and c, 

  𝑎𝑐𝑛−1 𝑎,  
3

41
  

7

41
 

𝑛−2

 , ( 𝑏𝑎|𝑐𝑎,  
7

41
 ) ⊢𝑐,𝑎  [  𝑎𝑐𝑛𝑎 ,  

3

41
  

7

41
 

𝑛−1

)  . 

 

 

Case 2 : Using string  𝑎𝑏𝑎 & 𝑐𝑎𝑏𝑎  
 

i : for the string𝑎𝑏𝑎, (𝑝 𝑎𝑏𝑎 =
2

41
)and using marker b, 

  𝑎𝑏|𝑎 ,
2

41
  ⊢𝑏   𝑎𝑏 ,

2

41
  , 

 

ii :for the string𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =
11

41
)and using marker a, 

  𝑐𝑎|𝑏𝑎 ,
11

41
 ⊢𝑎   𝑏𝑎 ,

11

41
  , 

 

iii :for the both string 𝑎𝑏𝑎, (𝑝 𝑎𝑏𝑎 =
2

41
)&𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =

11

41
)and using 

the markers a and b, 

  𝑎𝑏  𝑎, (
2

41
)) , (𝑐𝑎 𝑏𝑎,  

11

41
   ⊢𝑏,𝑎   𝑎𝑏𝑏𝑎  ,  

2

41
  

11

41
   , 

 

iv : for the string from (iii) and (ii), i.e. 

𝑎𝑏𝑏𝑎, (𝑝 𝑎𝑏𝑏𝑎 =  
2

41
  

11

41
 )&𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =

11

41
)and using the same 

markers a and b, 

  𝑎𝑏𝑏 𝑎,  
2

41
  

11

41
  , ( 𝑐𝑎|𝑏𝑎,  

11

41
 ) ⊢𝑏,𝑎  [  𝑎𝑏3𝑎 ,  

2

41
  

11

41
 

2

) , 

 

v : for each new string produce 𝑎𝑏𝑛−1𝑎, (𝑝 𝑎𝑏𝑛−1𝑎 =   
2

41
  

11

41
 

𝑛−2

) and 

string (ii)𝑐𝑎𝑏𝑎, ( 𝑝 𝑐𝑎𝑏𝑎 =
11

41
)and using the same markers a and b, 

  𝑎𝑏𝑛−1 𝑎,  
2

41
  

11

41
 

𝑛−2

 , ( 𝑐𝑎|𝑏𝑎,  
11

41
 ) ⊢𝑏,𝑎  [  𝑎𝑏𝑛𝑎 ,  

2

41
  

11

41
 

𝑛−1

)  . 
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Case 3 : Using string 𝑎𝑑𝑎 & 𝑏𝑎𝑑𝑎  
 

i : for the string 𝑎𝑑𝑎,  𝑝 𝑎𝑑𝑎 =
5

41
  and using marker d, 

  𝑎𝑑|𝑎 ,
5

41
  ⊢𝑑   𝑎𝑑 ,

5

41
  , 

 

ii :for the string𝑏𝑎𝑑𝑎, ( 𝑝 𝑏𝑎𝑑𝑎 =
13

41
) and using marker a, 

  𝑏𝑎|𝑑𝑎 ,
13

41
 ⊢𝑎   𝑑𝑎 ,

13

41
  , 

 

iii :for the both string 𝑎𝑑𝑎,  𝑝 𝑎𝑑𝑎 =
5

41
 &𝑏𝑎𝑑𝑎, ( 𝑝 𝑏𝑎𝑑𝑎 =

13

41
)and using 

the markers a and d, 

  𝑎𝑑  𝑎, (
5

41
)) , (𝑏𝑎 𝑑𝑎,  

13

41
   ⊢𝑑,𝑎   𝑎𝑑𝑑𝑎  ,  

5

41
  

13

41
   , 

 

iv : for the string from (iii) and (ii), i.e. 

𝑎𝑑𝑑𝑎, (𝑝 𝑎𝑑𝑑𝑎 =  
5

41
  

13

41
 )& 𝑏𝑎𝑑𝑎, ( 𝑝 𝑏𝑎𝑑𝑎 =

13

41
) and using the same 

markers a and d, 

  𝑎𝑑𝑑 𝑎,  
5

41
  

13

41
  , ( 𝑏𝑎|𝑑𝑎,  

13

41
 ) ⊢𝑑,𝑎  [  𝑎𝑑3𝑎 ,  

5

41
  

13

41
 

2

) , 

 

v : for each new string produce 𝑎𝑑𝑛−1𝑎, (𝑝 𝑎𝑑𝑛−1𝑎 =   
5

41
  

13

41
 

𝑛−2

)  and 

string (ii)𝑏𝑎𝑑𝑎, ( 𝑝 𝑏𝑎𝑑𝑎 =
13

41
)and using the same markers a and d, 

  𝑎𝑑𝑛−1 𝑎,  
5

41
  

13

41
 

𝑛−2

 , ( 𝑏𝑎|𝑑𝑎,  
13

41
 ) ⊢𝑑,𝑎  [  𝑎𝑑𝑛𝑎 ,  

5

41
  

13

41
 

𝑛−1

)  . 

 

 

 

For the strings from Case 1 [  𝑎𝑐𝑛𝑎 ,  
3

41
  

7

41
 

𝑛−1

) & Case 2  

[  𝑎𝑏𝑛𝑎 ,  
2

41
  

11

41
 

𝑛−1

)  using marker a, 

[(𝑎𝑐𝑛  𝑎 ,  
3

41
  

7

41
 

𝑛−1

 ,  𝑎|𝑏𝑛𝑎 ,  
2

41
  

11

41
 

𝑛−1

 ⊢ 𝑎  

  𝑎𝑐𝑛𝑏𝑛𝑎 ,  
2.3

412  
7.11

412  
𝑛−1

 . 
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For the strings result from (Case 1 and Case 2)(  𝑎𝑐𝑛𝑏𝑛𝑎 ,  
2.3

412  
7.11

412  
𝑛−1

 )  & 

Case 3 [  𝑎𝑑𝑛𝑎 ,  
5

41
  

13

41
 

𝑛−1

) and using marker a, 

[  𝑎𝑐𝑛𝑏𝑛 |𝑎 ,  
2.3

412  
7.11

412  
𝑛−1

 ,  𝑎|𝑑𝑛𝑎 ,  
5

41
  

13

41
 

𝑛−1

 ⊢ 𝑎  

 𝑎𝑐𝑛𝑏𝑛𝑑𝑛𝑎 ,  
2.3.5

413
  

7.11.13

413
 

𝑛−1

 . 

 

 

Therefore, 

 

𝐿 𝐺2, 𝑝2 =   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎 ,  
2.3.5

413
  

7

41
 

𝑘−1

 
11

41
 

𝑚−1

 
13

41
 

𝑛−1

 𝑘, 𝑚 ≥ 1 . 

𝑝2 =  
2.3.5

413   
7

41
 

𝑘−1

 
11

41
 

𝑚−1

 
13

41
 

𝑛−1

. 

 

 

Using the threshold properties, we can conclude the following: 

 

i :𝜂 = 0, ⇒  𝐿 𝐺2, = 0 =  ∅ ∈ 𝑅𝐸𝐺, 
 

ii :𝜂 > 0, ⇒  𝐿 𝐺2, > 0 = 𝐿 𝐺2  ∈ 𝑅𝐸𝐺, 
 

iii :𝜂 =  { 
2.3.5

413   
7.11.13

413  
𝑛−1

  𝑛 ≥ 1 , ⇒ 𝐿 𝐺2, 𝜂  =   𝑎𝑐𝑛𝑏𝑛𝑑𝑛𝑎  𝑛 ≥ 1 ∈

𝐶𝑆 − 𝑅𝐸𝐺, 
 

iv :𝜂 ≠ { 
2.3.5

413   
7.11.13

413  
𝑛−1

  𝑛 ≥ 1 , ⇒ 

𝐿 𝐺2, 𝜂  =   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑘 > 𝑚 > 𝑛 ≥ 1 ∪  𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑘 > 𝑛 > 𝑚 ≥ 1 
∪   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑚 > 𝑘 > 𝑛 ≥ 1 
∪   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑚 > 𝑛 > 𝑘 ≥ 1 
∪   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑛 > 𝑘 > 𝑚 ≥ 1 
∪   𝑎𝑐𝑘𝑏𝑚𝑑𝑛𝑎  𝑛 > 𝑚 > 𝑘 ≥ 1  ∈  𝐶𝑆 − 𝑅𝐸𝐺. 

 

 

The examples above illustrate that the use of thresholds with probabilistic semi-

simple splicing systems increase the generative power of splicing systems with 

finite components.  
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We should also mention two simple but interesting facts of probabilistic semi-

simple splicing systems.  

First as Proposition 1 and second as Proposition 2, stated in the following: 

 

Proposition 1 

For any probabilistic semi-simple splicing system (G), the threshold language 

𝐿 𝐺, = 0 is the empty set, i.e. 𝐿 𝐺, = 0 =  ∅. 

 

Proposition 2 

If for each splicing rule 𝑟in a probabilistic semi-simple splicing system (G), 

𝑝 𝑟 < 1, then every threshold language 𝐿 𝐺, > 𝜂  with 𝜂 > 0 is finite. 

 

From Theorem 1, Lemma 1 and Examples 1,2, we obtain the following two 

theorems. 

 

Theorem 2 

𝑅𝐸𝐺 ⊂ 𝑝𝑆𝑆𝐸𝐻 𝐹𝐼𝑁 ⊆ 𝑝𝑆𝑆𝐸𝐻 𝐹 = 𝑅𝐸 

where 𝐹 ∈   𝑅𝐸𝐺, 𝐶𝐹, 𝐿𝐼𝑁, 𝐶𝑆, 𝑅𝐸 . 
 

Theorem 3 

𝑝𝑆𝑆𝐸𝐻 𝐹𝐼𝑁 − 𝐶𝐹 ≠ ∅. 
 

 

 

 

4.0 CONCLUSIONS 

 

In this paper we introduced probabilistic semi-simple splicing systems by 

associating probabilities with strings and also establishing some basic but 

important facts. We showed that an extension of semi-simple splicing systems 

with probabilities increases the generative power of semi-simple splicing 

systems with finite components. In particular cases, probabilistic semi-simple 

splicing systems can generate noncontext-free languages. The problem of 

strictness of the second inclusion in Theorem 2 and the incomparability of the 

family of context-free languages with the family of languages generated by 

probabilistic semi-simple splicing systems with finite components (the inverse 

inequality of that in Theorem 3 remain open. 
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