Green Architecture in Built Environment

Mohd Ramzi Mohd Hussain
Izawati Tukiman
Asiah Abdul Rahim
Shamzani Affendy Mohd Din

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
GREEN ARCHITECTURE
IN BUILT ENVIRONMENT

Edited By

Mohd Ramzi Mohd Hussain
Izawati Tukiman
Asiah Abdul Rahim
Shamzani Affendi Mohd Din

KAED Universal Design Unit, KAED
International Islamic University Malaysia (IIUM) Kuala Lumpur MALAYSIA

IIUM Press
Contents

Acknowledgements vi
Preface vii

Chapter 1 Adaptability and Modularity in Housing: A Case Study of Raines Court and Next21
Zulkefli Ismail and Asiah Abdul Rahim 1

Chapter 2 Strength Comparison of Lightweight Foam Concrete of High Density Using Three (3) Different Water Cement Ratio
Alonge O. Richard and Mahyudin Ramli 33

Chapter 3 Landscape Design as Part of Green and Sustainable Building Design
Norhans Diyyana Nizarudin, Mohd Ramzi Mohd Hussain and Izawati Tukiman 43

Chapter 4 The Acceptability of Four Dimension (4D) Virtual Construction in Malaysia
Maisarah Ali and Julia Mohd Nor 53

Chapter 5 Reflected Radiation Intensity Estimation Using Artificial Neural Network
Muhammad Abu Eusuf and S. Adebayo-Aminu 71

Chapter 6 Evaluation of Affordable Urban-Mass House Design Based on Islamic Principles
Ahmad Bashri Sulaiman and Fakhriah Muhsein 83

Chapter 7 The Idea of Maqasid Al-Shari'ah in the Planning of Gated Community Scheme in Malaysia
Sharifah Fadylawaty Syed Abdullah, Azila Ahmad Sarkawi and Syahrida Bachok 95

Chapter 8 Effect of Airborne Particulates Towards Historical Heritage at Manjung, Perak Darul Ridzuan and National Museum. Kuala Lumpur
Norsyamimi Hanapi and Shamzani Affendi Mohd Din 115
EFFECT OF AIRBORNE PARTICULATES TOWARDS HISTORICAL HERITAGE AT MANJUNG, PERAK DARUL RIDZUAN AND NATIONAL MUSEUM, KUALA LUMPUR

Norsyamimi Hanapi¹ and Shamzani Affendy Mohd Din²

¹Department of Applied Arts and Design,
²Department of Building Technology & Engineering,
Kulliyyah of Architecture & Environmental Design,
International Islamic University Malaysia
¹syamimi_hnfi88@ymail.com,²shamzani.mohddin@yahoo.co.uk

ABSTRACT

Malaysia becomes one of the main countries in Asia with the highest level of air pollution problems. However, the consciousness among the publics about the issues is not as wide as the problems occurred. The research is focusing on the airborne particulates from different sources that can give harmful effects towards historical heritage at Manjung, Perak Darul Ridzuan and National Museum, Kuala Lumpur. Particulate Matters commonly attack on the materials such as stone, clay, metal, fibre and glass. This research come out with the comparison of mass concentration and physical characterization of airborne particulates from different sources at different site studies in which the dust sample had been collected at National Museum, Kuala Lumpur that are crowded with visitors, transportsations and construction works nearby, while other case studies are the historical heritages at Manjung, Perak Darul Ridzuan such as Beruas Museum and Pasir Salak Historical Complex which are exposed to the combustion of coal and fuels from power plant stations at Manjung and Lumut. The result from the dust sampling shows that the concentration of inhalable and respirable dust at National Museum, Kuala Lumpur is the highest among all site studies with 0.490mg/m³ and 0.455mg/m³. The levels of the particulates indoor and outdoor at site studies are all over the limit of National Standard TSP in Malaysia which is 0.08mg/m³ per 8 hours period. It can be concludes that the industrial activity like construction work is one of the main source of airborne particulates that suspended in the air. For that reason, it is important for the facilities management department of the buildings to use the particulate emission equipment to control the level of contaminants within the buildings other than conserving and preserving the historical heritage items from the damages and decays by the airborne particulates matter.

Keywords: Air Pollution, Airborne Particulates, Mass Concentration, Health, Heritage Site, Historical Items And Materials