CONTEMPORARY METALLIC MATERIALS

Edited by:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Upgrading of Laterite Ore by Reduction and Leaching</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hadi Purwanto and Pramusanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Upgrading of Iron Sand by Magnetic Concentration and Reduction</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Agus Geter Edy Sutjipto, Roslan Yahya</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Yuhelda Dahlans Hadi Purwanto, Nuryadi Saleh and Pramusanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Upgrading of Iron-rich Laterite Ore Using Reverse Flotation</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Hadi Purwanto, Mutaalim, Yuhelda Dahlans, Nuryadi Saleh and Pramusanto</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha and Law Shao Beng</td>
<td></td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha and Muhammed Olawale Hakeem Amuda</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Grain Refinement Practices in Ferritic Stainless Steel Welds</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Muhammed Olawale Hakeem Amuda and Shahjahan Mridha</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Shahjahan Mridha</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells

I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe

Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material

Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials

Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston

Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21
Reverse Engineering for Automotive Fuel Tank

Chapter 22
The possibility of utilizing scanning electron microscope for materials characterization

Chapter 23
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications

Chapter 24
Study on Zinc Oxide Crystal Growth

Chapter 25
Green Nanotechnology using SEM and AFM

Chapter 26
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films

Chapter 27
Mechanochemical Synthesis of CeO₂ Nanopowder using Planetary Ball Milling

Chapter 28
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell

Chapter 29
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications

Chapter 30
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication

Chapter 31
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Mechanochemical Synthesis of CeO$_2$ Nanopowder using Planetary Ball Milling

Iskandar I. Yaacob

Kulliyyah of Engineering – International Islamic University Malaysia
✉: iskandar_yaacob@iium.edu.my

Keywords: Mechanochemical, Planetary ball mill, Milling time, Nanocrystalline cerium dioxide

Abstract. Nanocrystalline cerium dioxide (CeO$_2$) had been successfully synthesized by mechanochemical technique at 12, 24, 36, 48 and 60 hours milling times. The starting materials, hydrated cerium carbonate and sodium hydroxide, were mixed in weight ratio of 4:1 and were milled in a planetary ball mill with ball to powder ratio of 10:1. The high energy impact forces provided by the milling media caused collision of starting materials and allowed the chemical reaction to occur thus produced nanocrystalline cerium dioxide. The products were then characterized using a battery of characterization methods, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and gas adsorption-desorption measurement. The nanocrystalline CeO$_2$ with 6.7 nm of crystallite size and specific surface area of 66.66 m2/g was obtained when the sample was milled for 60 hrs and annealed in air at 350 °C. The result showed that the crystallinity of nanocrystalline CeO$_2$ decreased with increasing the milling time.

Introduction

Synthesis and processing of nanometer size of CeO$_2$ have drawn considerable attention in recent years due to its physical and chemical properties that are significantly different from those of bulk materials. As one of the most important rare earth oxides, CeO$_2$ has been widely applied in various fields including polishing materials, environmental catalysts, UV-attenuating coating, fuel cells, and so on [1,2]. Several processing method have been proposed to produce nano-sized CeO$_2$, such as solgel process, homogeneous precipitation, microemulsion, hydrothermal synthesis, forced hydrolysis, and spray pyrolysis [3].

Recent studies have shown that mechanochemical processing holds significant potential for the synthesis of a wide range of nano-sized metallic and ceramic powders in an efficient and economical manner [4,5]. The process involves mechanical milling a mixture of precursor powders to form nanostructured materials. The starting powders react either during milling or subsequent heat treatment so that separated nanocrystals of desired phase embedded in a salt or oxide matrix can be obtained [6]. Usually, the mechanochemical process is performed by