CONTEMPORARY METALLIC MATERIALS

Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Table of Content

Chapter 1
Upgrading of Laterite Ore by Reduction and Leaching
Hadi Purwanto and Pramusanto
1

Chapter 2
Upgrading of Iron Sand by Magnetic Concentration and Reduction
Muta’alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto
7

Chapter 3
Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment
Agus Geter Edy Sutjipto, Roslan Yahya
16

Chapter 4
Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand
Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto
20

Chapter 5
Upgrading of Iron-rich Laterite Ore Using Reverse Flotation
Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto
27

Chapter 6
Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process
Shahjahan Mridha and Law Shao Beng
34

Chapter 7
Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder
Shahjahan Mridha and Muhammed Olawale Hakeem Amuda
41

Chapter 8
Grain Refinement Practices in Ferritic Stainless Steel Welds
Muhammed Olawale Hakeem Amuda and Shahjahan Mridha
48

Chapter 9
Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders
Shahjahan Mridha
53
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells

I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe

Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material

Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials

Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston

Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21
Reverse Engineering for Automotive Fuel Tank
Md Abdul Maleque and Atiqah Afzaluddin

121

Chapter 22
The possibility of utilizing scanning electron microscope for materials characterization

Agus Geter Edy Sutjipto

127

Chapter 23
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications

Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan

135

Chapter 24
Study on Zinc Oxide Crystal Growth

Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan

141

Chapter 25
Green Nanotechnology using SEM and AFM

A.G.E. Sutjipto and R. Muhida

147

Chapter 26
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films

Seoh Hian Teh, Iskandar Idris Yaacob

155

Chapter 27
Mechanochemical Synthesis of CeO₂ Nanopowder using Planetary Ball Milling

Iskandar I. Yaacob

163

Chapter 28
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell

S. A. Mohamad and A. K. Arof

170

Chapter 29
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications

S. A. Mohamad and A. K. Arof

176

Chapter 30
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication

S. A. Mohamad

181

Chapter 31
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite

Suryanto

186
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Upgrading of Laterite Ore by Reduction and Leaching

Hadi Purwanto¹ and Pramusanto²
¹Faculty of Engineering – International Islamic University Malaysia
²Research Center for Minerals and Coal Technology, Indonesia
✉: hadi@iium.edu.my; pramusanto@tekmira.esdm.go.id

Keywords: Magnetization, Limonitic ore, Leaching, Nickel, Ironmaking.

Abstract: In the viewpoint of environment preservation and efficient utilization of resources, a series process has been developed to utilize limonitic ore. Limonite is mineral content in laterite sediment with low Ni content and nickel laterite mining waste that can be an alternative raw material of iron making due to its high iron content. Upgrading of the ore was started with magnetization using mixed carbon monoxide and carbon dioxide gases at desired temperature then followed by leaching of the magnetized sample in sulphuric acid media. The result indicated that magnetization can speed up the nickel dissolution and obstruct the iron dissolution. The dissolution rate of nickel was very high in the period of less than 5 min for magnetized sample. The nickel dissolution would be higher by prolonging the leaching time. However, leaching time would not increase the dissolution of both nickel and iron in the non-magnetized sample. Accordingly, magnetization of the ore can control the non-metallic dissolution in the leaching process such as iron oxide. At the end of the leaching process, there will be iron-rich residue with minimal nickel content and nickel-rich solution.

Introduction

Laterite ore is one of the mineral resources containing several kinds of metal elements, such as nickel, cobalt and iron. It is widely distributed in the equatorial region, such as India, Philippine and Indonesia, and is mainly used as a nickel resource. However, the utilization is limited to only the high grade nickel content. Over three decades of nickel refining operation, mining has centered predominantly on nickel containing ore to be fed to ferronickel smelter or nickel matte process. As a proven deposit, the top layer of nickel ore with high content of iron, those containing significant limonitic ore have been reviewed its possibility to be utilized in production of iron ore pellet as well as nickel containing pig iron [1,2]. Although the fundamental characteristics of lateritic ore have been reported in several literatures [3,4], further research on the mineralogical characteristics and reduction behavior of the ore is essential for further utilization as iron ore. When the high-grade Fe laterite is used for iron and steel industries, the complicated chemical structure brings about some difficulties. The high amounts of nickel and cobalt contents result in the low quality of the pig iron produced. Therefore, it is necessary to eliminate the nickel to get a useful laterite for iron-making.

Several methods have been reported to extract Ni using leaching by sulphuric acid, hydrochloric leaching or nitric acid, sulphating process, and so on [5-7]. One of the methods commercially applied is the direct pressure leaching using sulphuric acid (Moa Bay method)