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Abstract 
Homotopy approximation methods (HAM) can 
be considered as one of the new methods belong 
to the general classification of the computational 
methods which can be used to find the numerical 
solution of many types of the problems in 
science and engineering. The general problem 
relates to the flow and the depth of water in open 
channels such as rivers and canals is a nonlinear 
algebraic equation which is known as continuity 
equation. The solution of this equation is the 
depth of the water. This paper represents attempt 
to solve the equation of depth and flow using 
Newton homotopy based on Taylor series. 
Numerical example is given to show the 
effectiveness of the purposed method using 
MATLAB language. 
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1. Introduction 
It was known that finding the depth of the water 
and its velocity in open channel flow is one of 
the most important problems in civil 
engineering. To determine it, we need to solve a 
nonlinear algebraic equation called continuity 
equation. There are many classical numerical 
methods used to solve this equation, such as 
Newton-Raphson method. This method has been 
proven globally convergent only under 
unrealistically restrictive conditions. They 
sometimes fail because it is difficult to provide a 
starting point sufficiently close to an unknown 
solution [1]. 
To overcome this convergence problem, globally 
convergent homotopy methods have been 
studied by many researchers from various view 
points. By these studies, the application of the 
homotopy methods in practical engineering 
simulation has been remarkably developed 
homotopy problem with the theoretical guarantee 
of global convergence. However, the 

programming of sophisticated homotopy 
methods is often difficult for non-experts or 
beginners.[1-23, 25-29] 
There are several types of homotopy methods, as 
one of the efficient methods for solving Van der 
Waals problem [11]; the Newton homotopy 
(NH) method is well known [6]. For this method, 
many studies have been formed from various 
viewpoints. Since the idea of Newton homotopy 
is introduced, the path following often becomes 
smooth. However, in this method, the initial 
point is sometimes far from the solution [3]. 
In this paper, we discuss the use of Newton 
homotopy method (NHM) based on Taylor series 
of the multiple version to solve the nonlinear 
algebraic equation called continuity equation for 
finding the depth of the water in open channel 
flow. Newton homotopy connects a trivial 
solution of this nonlinear algebraic equation to 
the desired unknown solution. The proposed 
method is almost globally convergent algorithm 
[10]. By numerical examples, it is shown that the 
proposed method efficient than the conventional 
methods. It is also shown that the proposed 
method can be easily implemented in MATLAB 
software. 
 
2. The Equation of Open-Channel Flow 
The most fundamental relationship between flow 
q (m3/s) and depth h (m) is the continuity 
equation 
 

q = uac  (1) 
 
where ac = the cross-sectional area of the channel 
(m2) and u = a specific velocity (m/s). Depending 
on the channel shape, the area can be related to 
the depth by some functional relationship. For 
the rectangular channel depicted in figure 1,  
 

ac = bh  (2) 
 
where b = the width (m) 
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Figure 1 

Substituting this relation into equation (1) gives 
 

q = ubh  (3) 
 
Now, although equation (3) certainly relates the 
channel parameters, it is not sufficient to find the 
depth h and the velocity u because assuming that 
b is specified, we have one equation and two 
unknowns (u and h). We therefore require an 
additional equation. For uniform flow (meaning 
that the flow does not vary spatially and 
tempo7rally, the Irish engineer Robert Manning 
proposed the following semi-empirical formula 
(appropriately called the Manning equation) 
 

u = 3/23/21 sr
n

  (4) 

 
where n = the Manning roughness coefficient (a 
dimensionless number used to parameterize the 
channel friction), s = the channel slope 
(dimensionless, meters drop per meter length), 
and r = the hydraulic radius (m), which is related 
to more fundamental parameters by 
 

p
ca

r =   (5) 

where p = the wetted perimeter (m). As the name 
implies, the wetted perimeter is the length of the 
channel sides and bottom that is under water. For 

example, for a rectangular channel, it is defined 
as 
 

p = b + 2h   (6) 
 
Although the system of nonlinear equations (3) 
and (4) can be solved simultaneously using 
Newton-Raphson approach, an easier approach 
would be to combine the equations. Equation (a) 
can be substituted into equation (3) to give 
 

3/13/2 sr
n

bhq =   (7) 

 
Then the hydraulic radius, Equation (5), along 
with the various relationships for the rectangular 
channel can be substituted, 

 

3/2)2(

3/5)(2/1

hb

bh
n

sq
+

=  (8) 

Thus, the equation now contains a single 
unknown h along with the given value for q and 
the channel parameters (n, s, and b). 
Although we have one equation with an 
unknown, it is impossible to solve explicitly for 
h. However, the depth can be determined 
numerically by reformulating the equation as a 
root problem, 

 

0
3/2)2(

3/5)(2/1
)( =−

+
= q

hbn

bhshf  (9) 

 
Equation (9) can be solved readily with any of 
the root-location methods either bracketing 
methods such as bisection and false position or 
open methods like the Newton-Raphson and 
secant method. The complexity of bracketing 
methods is that to determine whether we can 
estimate lower and upper guesses that always 
bracket a single root. For the cases of initial 
guesses, the problem of initial guesses is 
complicated by the issue of convergence. For 
this reason, we will apply the method of Taylor 
Newton Homotopy described in section 3 to 
solve equation (9) [44]. 
 
3. Taylor-Newton Homotopy Method 
First, we describe roughly the theoretical basis of 
the method. Suppose we need to solve the 
following equation: 

 
f(x) =0  (10) 
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where f is a continuously differentiable function 
from Rn into itself. To find the solution, we can 
construct a homotopy. The term homotopy 
means a continuous mapping H is defined on the 
product Rn+1: Rn×I to Rn, H: Rn×I→Rn where I is 
the unit interval [0, 1] such that 
 

H(x, t) = tf(x) + (1 − t)g(x) (11) 
 

from g(x) = 0 to f(x) = 0, where the solution of 
g(x) = 0 can be found trivially. For example, 
choose 
 

g(x) = f(x) – f(x0)  (12) 
 
Substitute equation (5) in equation (4) and 
suppose that x is a function of t, we obtained a 
new version of homotopy 
 

H(x, t) = f(x) + (t − 1)f(x0) (13) 
 
This form of the homotopy is termed the Newton 
homotopy because some of the ideas behind it 
come from the work of Sir Isaac Newton (1642-
1727) himself [8]. 
It is seen from equation (13) that, at t = 0, the 
solution of the equation (13) is already known. 
For different values of t, the equation will result 
in different solutions. At t =1, the solution of 
equation (13) is identical to the desired unknown 
solution. To follow the above predetermined 
trajectory, define 

 
1−H ={(x, t) = 0/ H(x, t) = 0} (14) 

 
as the set of all solutions (x, t) ∈ Rn+1 to the 
system H(x, t) = 0. If H is continuously 
differentiable, we can make a linear 
approximation of it near (xk, tk) using 
multivariable version of the Taylor series: 
 

H(xk+1, tk+1) = H(xk, tk) + (xk+1−xk)Hx(xk, tk) + 
                           (tk+1−tk)Ht(xk, tk) + … (15) 
 
or 

H(xk+1, tk+1) ≈ H(xk, tk) + (xk+1−xk)Hx(xk, tk) + 
 (tk+1−tk)Ht(xk, tk)  (16) 

 
The symbol ≈ means approximately equal and 
 

Hx = x
H
∂
∂ , and Ht = t

H
∂
∂ . 

 

Study points (xk+1, tk+1) in 1−H  that are near the 
point (xk, tk), as we want to show that they are on 
a path through. By definition, all such points 
must satisfy  
 

H(xk+1, tk+1)  = 0.  (17) 
 
Moreover, if we assume that H is actually linear 
near (xk, tk), then by (16) and (17), we get 
 

0 = H(xk, tk) + (xk+1−xk)Hx(xk, tk) + 
 (tk+1−tk)Ht(xk, tk)  (18) 

 
In other words, if H where actually linear near 

(xk, tk), then any (xk+1, tk +1) ∈ 1−H  point near 
(xk, tk) would have to satisfy this equation [8]. 
Assuming that Hx is invertible at (xk, tk), 
 

),(

),(),(1
ktkxxH

ktkxttHktkxHkxkx ∆+
−=+ ; 

∆t=tk+1−tk and k = 0, 1, 2, …  (19) 
or 
 

)],(),([1)],([1 ktkxttHktkxHktkxxHkxkx ∆+−−=+ ; 
       k = 0, 1, 2, …   (20) 
 
Here tk ∈ [0, 1]. We named (19) & (20) as 
Taylor-Newton homotopy (T-NH) formulas. 
 
4. The Proposed Algorithm (T-NH Algorithm) 
Based on the above theory, we propose a new 
application of Newton homotopy based on 
Taylor series (T-NH) for solving the continuity 
equation as follows: 

 

q
hbn

bhs
hf −

+
=

3/2)2(

3/5)(2/1
)(  

H(h, t) = f(h) + (1−t)f(h0)  (21) 
 

where h is the depth of the water. It is observed 
that the first term of the above equation is equal 
to te continuity equation and h0 is the initial 
value for the depth of the water h. The value of h 
can be obtained by solving (21) using (22); 
 

),(

),(),(1
ktkxhH

ktkhttHktkhHkhkh
∆+

−=+ ; 

    k = 0, 1, 2, …   (22) 
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Thus, the proposed method is summarized as 
follows: 
1. Choose the initial value h0. 
2. Choose ∆t. 
3. Follow the trajectory from t = 0 to t = 1 to find 

the desired solution using (22). 
4. Stop when the norm less than or equal the 

allowance tolerance ε  (epsilon: Small 
positive real number) ; 

 
ε≤)(hf .or →)(hf 0 

 
 
5. Numerical Example 
Compute the depth for the water in open vhannel 
using the following provided data: 
 

q = 5 m3/s, n = 0.03, b = 20m, s = 0.0002, 
 
Solution 

5
3/2)220(

3/5)20(471405.0
)( −

+
=

h

h
hf  

3/5)220(

3/5)20(5708.12
3/2)220(

3/2)20(7135.15)(
h

h

h

hhf
+

−
+

=′ . 

We choose the minimum value of h as the initial 
value of , 
 

h0 = 0.001 
f(0.001) = −4.999 

=′ )001.0(f  0.1571 
Ht = f(h0) & Hv = )(hf ′  

 
By choosing ∆t = 0.25, the calculations to 
determine h are shown by the table in below, 
 

Table(1) 
No. tk hk hk+1 N 

1 0 0.001 3.1833 49.0168 
2 0.25 3.1833 2.3094 28.1215 
3 0.50 2.3094 1.0200 04.1334 
4 0.75 1.0200 0.7023 4.4e-05 

 
From the table above, it appears that when the 
parameter tk = 0.75, k = 4 then tk+1 = 1 and the 
depth hk+1 = 0.7023 with norm N = 4.4288e-005. 
Since this norm is very close to zero then the 
obtained value of h; h = 0.7023 can be the 
desired value for the depth of the water. 
 
6. Conclusion 
The Taylor-Newton homotopy method is 
conceptually very simple in finding the depth of 

the water in open channel. We conclude that the 
norm becomes smaller when the parameter t 
increases from t = 0 to t = 1. The values of norm 
showed that this method is globally convergent. 
To gain more effective results, we can choose ∆t 
smaller and repeat the same calculations. 
Another advantage is with certain number of 
iterations, the desired solution will be obtained. 
Based this advantage, in this method, we didn’t 
need to control the value of the error as in the 
classical methods as Bisection, fixed-point and 
Newton-Raphson methods. In particular, the 
proposed method is especially attractive 
compared with the existing methods. Naturally, 
the proposed method take more computing time, 
this is the common disadvantage of homotopy 
methods. At the expense of computing speed we 
can achieve a much wider convergent region. 
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