Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface iii
Acknowledgement iv
Copyright

PART 1: ELECTRO DISCHARGE MACHINING1

Chapter 1
Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahmad Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 2
Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahmad Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 3
Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM
Ahmad Ali Khan, Nurul Shima Mohd Noh

Chapter 4
A Study on Material Removal Rate during EDM with Tantalum Carbide-Copper Compacted Electrode
Ahmad Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 5
Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes
Ahmad Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 6
Relationship between Machining Variables and Process Characteristics during Wire EDM
Ahmad Ali Khan, M. B. M. Ali and N. B. M. Shaffia
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING .. 76

Chapter 15 ... 77
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16 ... 83
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17 ... 89
Investigation of MRR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18 ... 95
Investigation of TWR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19 ... 101
Investigation of Chip Formation and Minimum Chip Thickness in
Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 ... 107
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 ... 113
Effect of Micro End Milling Tool Diameter on Minimum Chip
Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 ... 119
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elahtiah and Musah Jamal Alrafaie

Chapter 23 ... 124
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elahtiah and Musah Jamal Alrafaie

Chapter 24 ... 130
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrafaie and Ahmad Chaaban Elahtiah

Chapter 25 ... 136
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING

Chapter 30 166
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazileen

Chapter 31 172
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32 178
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33 184
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34 190
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35 196
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Iznavinawati Yusof

ix
Chapter 13

An Introduction to Electrical Discharge Machining

Ahsan Ali Khan and Mohammed Baba Ndalian
Faculty of Engineering – International Islamic University Malaysia
☎: mbndalian@yahoo.com

Keywords: Electrical discharge machining (EDM), Electrode, Dielectric Fluid, dry EDM, Wire-cut EDM, Micro-EDM.

Abstract. The fundamental features of electrical discharge machining (EDM) were discussed in this chapter. The machining principle and its outcomes were highlighted in this chapter. The input variable of EDM presented here are electrical and non-electrical ones. The output of EDM process are given in terms of the material removal rate (MRR), tool wear rate (TWR) and the surface integrity. This chapter is concluded with a discussion on types of EDM. The various types presented here include: the die sinking type, the wire-cut, micro and the dry EDM.

Introduction

Electrical discharge machining (EDM) is one of the non traditional machining processes used to machined hard materials that were hitherto difficult-to-machine. It is a thermal process that involves melting and vapourisation of the pair of workpiece and electrode. The erosive effect of electrical discharge machining was invented by Joseph Priestly, a 1770 English scientist. The Lazarenkos in 1943 were credited to being the first duo to work on what becomes EDM today [1]. Since then, a refined and controlled machining process becomes established through removal of the destructive effects associated with electrical discharges.

The EDM Process

The EDM process uses electrical discharges to remove material from the workpiece, with each spark producing a temperature of between 10,000-20,000°C. A typical electrical discharge machine is shown in Fig. 1. The basic principle is the conversion of electrical energy into thermal energy through a series of discrete electrical discharges occurring between the electrode (tool) and workpiece immersed in a dielectric fluid. The insulating effect of the dielectric used in EDM process is very important as it prevents the electrolysis of the electrodes during the process. Spark is initiated when high voltage is applied between the electrode and workpiece at small gap as shown in Figs. 2a and b. Materials start to melt and get eroded from both the tool and workpiece surfaces. After each discharge, the capacitor is recharged from DC source through a resistor, and the spark that follows get transferred to the next narrowest gap. At the end, sparks spread over the entire workpiece surface leading to its erosion, or machining to a shape that is mirror image of the electrode. As a consequent to this high temperature operation, the workpiece is subjected to a heat affected zone (HAZ) the top layer of which comprises recast material (Fig. 3). The thickness, composition and condition of this layer depend on the discharge energy, the workpiece material, tool electrode and dielectric fluid. Both hard and soft surface layers can be produced despite perceived thinking that the recast layer is always hard. With ferrous workpiece materials, the recast layer