Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface
Acknowledgement
Copyright

PART 1: ELECTRO DISCHARGE MACHINING1

Chapter 1
Tool Wear rate during Electrical Discharge Machining (EDM) with
Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 2
Wear Ratio and Work Surface Finish during Electrical Discharge
Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 3
Role of Current, Voltage and Spark on-time on Electrode Material
Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh

Chapter 4
A Study on Material Removal Rate during EDM with Tantalum
Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin

Chapter 5
Features of EDM of Mild Steel with Ta-Cu Powder Compacted
Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin

Chapter 6
Relationship between Machining Variables and Process Characteristics
during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Ery Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Ery Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15 ... 77
Focused Ion Beam Micromachining: Technology and Application
 Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16 ... 83
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
 for Nano Surface Finish
 Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17 ... 89
Investigation of MRR for Finish Cut of Titanium Alloy using Micro
 Electro Discharge Milling
 Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18 ... 95
Investigation of TWR for Finish Cut of Titanium Alloy using Micro
 Electro Discharge Milling
 Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19 ... 101
Investigation of Chip Formation and Minimum Chip Thickness in
 Micro/Meso Milling: Methodology and Design of Experiment
 Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 ... 107
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
 Modelling of Minimum Chip Thickness
 Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 ... 113
Effect of Micro End Milling Tool Diameter on Minimum Chip
 Thickness
 Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 ... 119
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
 Methodology and Procedure
 Mohammad Yeakub Ali, Ahmad Chaaban Elabtaah and Musah Jamal Alrefaie

Chapter 23 ... 124
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
 Analysis of Surface Roughness
 Mohammad Yeakub Ali, Ahmad Chaaban Elabtaah and Musah Jamal Alrefaie

Chapter 24 ... 130
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
 Analysis of Material Removal Rate
 Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabtaah

Chapter 25 ... 136
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING .. 165

Chapter 30
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lufti and Mohamad Shahrilnizam

Chapter 35
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izausmawati Yusof
Chapter 5

Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes

Ahsan Ali Khan, Mohammad Azhadi Bin Mohd Hambiyah and Mohd Faiz Bin Nazi Nadin
Faculty of Engineering – International Islamic University Malaysia

Keywords: Electro discharge machining, Surface roughness; electrodes, Tantalum carbide; Copper

Abstract. During EDM work surface roughness can be influenced by using powder compacted electrodes. The present study shows that surface roughness of workpiece is higher when using TaC/Cu green compacted electrode compared to that produced by pure copper electrode. When using TaC/Cu green compacted electrode, more material is deposited on the workpiece surface and a thick layer is formed on the surface. In addition, the particles from the electrode are randomly deposited on the workpiece surface. On the contrary, there will be only a very thin layer of material from electrode will be deposited on the workpiece surface when using pure copper electrode. A thick deposited layer with randomly deposited particles will create rougher surface rather than a thin layer. That is why surface roughness is high when using TaC/Cu green compacted electrode.

Introduction

In normal EDM process by using conventional electrode like copper and brass, the surface quality especially corrosion resistance of work material does not improve. It needs further processing to enhance the corrosion resistance and this will increase the machining cost. Powder metallurgy (PM) compacted electrode is the best method to overcome this problem because during machining operation, the material from the compacted electrode will be deposited on top surface of work material. Hence, it will increase the corrosion resistance of work material while machining cost is reduced. It is also reported by some investigators that work surface roughness can also be improved using PM compacted electrodes.

The level of workpiece modification or workpiece alloying in EDM can be greatly improved with the usage of PM compacted electrode. The speed to develop layer formation on the workpiece surface also can be increased. The thickness of recast layer also is increased by applying PM compacted electrode. Harder layers on the workpiece surface can be beneficial in providing increased abrasion and corrosion resistance to the workpiece [1, 2].

Green PM compacted electrode is the electrode made by mixing two or more metal powder and pressing it by the compression machine without going through the sintering process. Compacting pressure during in the fabrication of green PM compacted electrode give major effect to the electrical, thermal and mechanical properties of the electrode. When the compacting pressure is high, the electrical, thermal and mechanical properties will show significant improvements [3].