ANTENNAS AND AND PROPAGATION Modeling, Simulation & Measurements Edited by MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia JALEL CHEBIL B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia **IIIIM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # ANTENNAS ## **AND** # PROPAGATION: Modeling, Simulation & Measurements Edited by MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia **JALEL CHEBIL** B.Sc.,M.Sc.,Ph.D.,MIEEE International Islamic University Malaysia #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Md. Rafiqul Islam & Jalel chebil: Antennas and Propogation: Modeling, Simulation & Measurements Bibliography p. Includes Index ISBN ISBN: 978-967-418-138-3 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed By: IIUM PRINTING SDN.BHD. NO. 1, JALAN INDUSTRI BATU CAVES 1/3 TAMAN PERINDUSTRIAN BATU CAVES BATU CAVES CENTRE POINT 68100 BATU CAVES SELANGOR DARUL EHSAN TEL: +603-6188 1542 / 44 / 45 FAX: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ## **Table of Content** Preface | Part I | Microstrip Antenna Design | Page | |------------|--|------| | Chapter 1 | Ultra Wideband Antennas Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam | 1 | | Chapter 2 | Patch Antenna Parameters For Ultra Wideband Design Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam | 6 | | Chapter 3 | Design Procedure for Microstrip Patch Antenna
Shaker MM. Al-Karaki, Muhammad Feroze Akbar J. Khan, Md. Rafiqul Islam | 13 | | Chapter 4 | Design of Symmetrical Fed Patch UWB Antenna Using Partial Ground and Stairs Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 22 | | Chapter 5 | Design of Symmetrical Fed Patch UWB Antenna Using Slotted Partial Ground And Stairs Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 33 | | Chapter 6 | Design of Symmetrical Fed Patch UWB Antenna With Tuning Stub
And Symmetrical Slotted Ground
Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar
J. Khan and Shaker MM. Al-Karaki | 40 | | Chapter 7 | Design of Unsymmetrical Fed Patch UWB Antenna With Unsymmetrical Slotted Ground Md. Rafiqul Islam, AHM Zahirul Alam, Shaker MM. Al-Karaki and Muhammad Feroze Akbar J. Khan | 49 | | Chapter 8 | Ultra Wideband Antenna With Band Notch Using Asymmetrical Feedline AHM Zahirul Alam and Md. Rafiqul Islam | 56 | | Chapter 9 | Multi-Band Reconfigurable Antenna Using RF MEMS Switch AHM Zahirul Alam and Md. Rafiqul Islam | 63 | | Chapter 10 | Multi-Band Planar Patch Antenna AHM Zahirul Alam and Md. Rafiqul Islam | 69 | | Chapter 11 | Tuning Fork Type Planar Antenna AHM Zahirul Alam and Md. Rafiqul Islam | 76 | | Chapter 12 | Leaky-Wave Array Antenna
Mimi Aminah Wan Nordin, Hany E. Abd El-Raouf, AHM Zahirul Alam,
Md. Rafiqul Islam | 83 | | Chapter 13 | Overview of Smart Antenna System Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa Khaizuran Abdullah, | | |------------|---|-----| | Chapter 14 | Direction of Arrival Algorithms For Array Antenna Design Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam. Othman O. Khalifa, Khaizuran Abdullah | 97 | | Chapter 15 | Analysis of Beamforming Algorithms Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah | 108 | | Chapter 16 | Design of Linear Array Antenna For Smart Antenna Application Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa, Khaizuran Abdullah, Ibrahim A. Haji | 121 | | Part II | Propagation Measurements and Modeling | | | Chapter 17 | Propagation Path Loss Modeling For Wireless Applications Ali Khadim, Jalel Chebil and Md Rafiqul Islam | 137 | | Chapter 18 | Comparison between Measured and Predicted Path Loss For Mobile Communication in Malaysia Jalel Chebil, Md Rafiqul Islam and Ali Khadim | 152 | | Chapter 19 | Proposed Path Loss Models For Suburban Area in Kuala Lumpur Jalel Chebil, Md Rafiqul Islam and Ali Khadim | 157 | | Chapter 20 | Rain Rate Distribution For Microwave Link Design in Malaysia
Jalel Chebil and Tharek Abd. Rahman | 164 | | Chapter 21 | Rain Rate Conversion Factor in Malaysia Jalel Chebil and Tharek Abd. Rahman | 171 | | Chapter 22 | A Matlab Program for Prediction of Rain Rate and Rain Attenuation Distributions in Malaysia Jalel Chebil and Tharek Abd. Rahman | 180 | | Chapter 23 | Time-Delay Neural Network For Rainfall Forecasting
Kyaw Kyaw Htike, Othman O. Khalifa and Md. Rafiqul Islam | 186 | | Chapter 24 | Development of One-Minute Rain Rate Contour Maps For Radiowave Propagation in Malaysia Jalel Chebil and Tharek Abd. Rahman | 193 | | Chapter 25 | Rain Attenuation Measurements in Malaysia Jalel Chebil and Tharek Abd. Rahman | 201 | | Chapter 26 | Propagation Study on Rain Attenuation at 18 GHz in Malaysia Jalel Chebil and Tharek Abd. Rahman | 206 | | Chapter 27 | Investigation Of Rain Attenuation At 38 GHz | 214 | | | Ahmad Fadzil Ismail and Khairayu Badron | 220 | |------------|--|-----| | Chapter 28 | Rain Attenuation Prediction Models For Earth-Space Link Ahmad Fadzil Ismail and Khairayu Badron | 220 | | Chapter 29 | Development of A Modified Rain Attenuation Prediction Model Ahmad Fadzil Ismail and Khairayu Badron | 226 | | Chapter 30 | Antenna Losses Due To Rainfall And Its Effect On The Rain
Attenuation Measurements
Jalel Chebil and Tharek Abd. Rahman | 233 | | Chapter 31 | Modeling Of Wet Antenna Losses For Frequencies 15-38 GHz Md. Rafiqul Islam, Jalel Chebil and Tharek Abdul Rahman | 239 | | Chapter 32 | Path Length Reduction Factor For Rain Attenuation Prediction In Malaysia Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman | 248 | | Chapter 33 | Frequency Scaling Methods For Rain Attenuation Prediction Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman | 256 | | Chapter 34 | Proposed Frequency Scaling Method Based On Measured Rain
Attenuation Data
Md. Rafiqul Islam. Jalel Chebil and Tharek Abdul Rahman | 269 | | Chapter 35 | Analyses Of Rain Fade Characteristics For A 38 GHz Link In The Tropics Ahmad Fadzil Ismail and Khairayu Badron | 278 | | Chapter 36 | Worst-Month Statistics Modeling Based on Measured Data Md. Rafigul Islam, Jalel Chebil and Tharek Abdul Rahman | 285 | | Chapter 37 | Worst-Month Rain Fade Statistics at 38 GHz Ahmad Fadzil Ismail and Khairayu Badron | 298 | | Chapter 38 | Rain Fade Slope Prediction Model Based On Satellite Data Measured
In Malaysia
Md. Rafiqul Islam, Khalid Al-Khateeb, Sheroz Khan and Hassan Dao | 303 | | Chapter 39 | Effects Of Rain On Free Space Optical Propagation Suriza A.Z., Md. Rafiqul Islam, Wajdi Al-Khateeb and A.W. Naji | 310 | | Chapter 40 | Investigation Of Solar Environment Effects On Space Assets & Satellite Signals Othman O. Khalifa. Md. Rafiqul Islam. Jalel Chebil, Saad Bashir and Sivamohan A/L V.Shunmugam | 318 | #### Chapter 30 ### Antenna Losses Due To Rainfall And Its Effect On The Rain Attenuation Measurements Jalel Chebil¹ and Tharek Abd. Rahman² #### 30.1 Introduction A microwave link at 18.585 GHz, horizontally polarized, was set up between two points inside the Universiti Teknologi Malaysia-Skudai campus (UTM-Skudai) at a separation of 300m. The data collection system is controlled by a computer which operates 24 hours with a sampling rate of one second. The rain attenuation measurements started since 1st of August 1995. Along the microwave link path, a 0.5 mm tipping bucket rain gauge is installed to measure the rain rate with 1-min integration time. The measured data should represent the attenuation due to rain on the propagation path. Unfortunately, the measured data contains some other losses which are due to rain effect on antennas. These losses are unwanted and must be filtered out in order to estimate the desired rain attenuation due to propagation path with good accuracy. The losses due to rainfall on the antenna are determined by the details of the installation such as the shape and condition of the antenna surface and the positioning of the antenna [1-4]. The antenna used is of parabolic shape with 4 feet diameter and it is positioned vertically. This position prevents large amount of water from accumulating on the antenna surface. Both receiving and transmitting antennas are not covered by any radome thus exposing the antenna feeds and reflecting surfaces to rain. Since no theoretical information is available for estimating these losses, several tests were performed as it will be explained in the coming section. #### 30.2 Tests for Wet Antenna Losses In the first test, the antenna surface and its feeder are sprayed separately for about 2 minutes. It is observed that during the spray the feeder losses reach 3 dB and the surface losses reach about 0.2 dB as indicated in Figure 30.1. When the water is turned off, the surface losses persist for few minutes, then decreases to zero. For the feeder, its losses decreases sharply to about 0.5 dB, then decreases slowly to zero. Undoubtedly, these losses are caused by the presence of water as layer or as drops on the antenna which dries out with time. The effect of water on the antenna feeder is quiet large and definitely affect the accuracy of the collected data. These losses can be minimized by covering the antenna by a radome. Department of Electrical and Computer Engineering, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Wireless Communication Centre, Faculty of Electrical Engineering, University of Technology Malaysia, Locked bag 791, 80990 Johor Bahru, Malaysia