ANTENNAS AND PROPAGATION
Modeling, Simulation & Measurements

Edited by
MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEE
International Islamic University Malaysia

JALEL CHEBIL B.Sc., M.Sc., Ph.D., MIEE
International Islamic University Malaysia
ANTENNAS AND PROPAGATION: Modeling, Simulation & Measurements

Edited by

Md. RafiQUL islam B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

Jalel Chebil B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

IIUM Press
Table of Content

Preface

Part I Microstrip Antenna Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Ultra Wideband Antennas</td>
<td>Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Patch Antenna Parameters For Ultra Wideband Design</td>
<td>Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Design Procedure for Microstrip Patch Antenna</td>
<td>Shaker MM. Al-Karaki, Muhammad Feroze Akbar J. Khan, Md. Rafiqul Islam</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Design of Symmetrical Fed Patch UWB Antenna Using Partial Ground and Stairs</td>
<td>Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Design of Symmetrical Fed Patch UWB Antenna Using Slotted Partial Ground And Stairs</td>
<td>Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Design of Symmetrical Fed Patch UWB Antenna With Tuning Stub And Symmetrical Slotted Ground</td>
<td>Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki</td>
<td>40</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Design of Unsymmetrical Fed Patch UWB Antenna With Unsymmetrical Slotted Ground</td>
<td>Md. Rafiqul Islam, AHM Zahirul Alam, Shaker MM. Al-Karaki and Muhammad Feroze Akbar J. Khan</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Ultra Wideband Antenna With Band Notch Using Asymmetrical Feedline</td>
<td>AHM Zahirul Alam and Md. Rafiqul Islam</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Multi-Band Reconfigurable Antenna Using RF MEMS Switch</td>
<td>AHM Zahirul Alam and Md. Rafiqul Islam</td>
<td>63</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Multi-Band Planar Patch Antenna</td>
<td>AHM Zahirul Alam and Md. Rafiqul Islam</td>
<td>69</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Tuning Fork Type Planar Antenna</td>
<td>AHM Zahirul Alam and Md. Rafiqul Islam</td>
<td>76</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Leaky-Wave Array Antenna</td>
<td>Mimi Aminah Wan Nordin, Hany E. Abd El-Raouf, AHM Zahirul Alam, Md. Rafiqul Islam</td>
<td>83</td>
</tr>
</tbody>
</table>
Chapter 13 Overview of Smart Antenna System
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah

Chapter 14 Direction of Arrival Algorithms For Array Antenna Design
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah

Chapter 15 Analysis of Beamforming Algorithms
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah

Chapter 16 Design of Linear Array Antenna For Smart Antenna Application
Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa, Khaizuran Abdullah and Ibrahim A. Haji

Part II Propagation Measurements and Modeling

Chapter 17 Propagation Path Loss Modeling For Wireless Applications
Ali Khadim, Jafel Chebil and Md Rafiqul Islam

Chapter 18 Comparison between Measured and Predicted Path Loss For Mobile Communication in Malaysia
Jafel Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 19 Proposed Path Loss Models For Suburban Area in Kuala Lumpur
Jafel Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 20 Rain Rate Distribution For Microwave Link Design in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 21 Rain Rate Conversion Factor in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 22 A Matlab Program for Prediction of Rain Rate and Rain Attenuation Distributions in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 23 Time-Delay Neural Network For Rainfall Forecasting
Kyaw Kyaw Htike, Othman O. Khalifa and Md. Rafiqul Islam

Chapter 24 Development of One-Minute Rain Rate Contour Maps For Radiowave Propagation in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 25 Rain Attenuation Measurements in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 26 Propagation Study on Rain Attenuation at 18 GHz in Malaysia
Jafel Chebil and Tharek Abd. Rahman

Chapter 27 Investigation Of Rain Attenuation At 38 GHz

Chapter 28 Rain Attenuation Prediction Models For Earth-Space Link
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 29 Development of A Modified Rain Attenuation Prediction Model
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 30 Antenna Losses Due To Rainfall And Its Effect On The Rain Attenuation Measurements
Jaleel Chebil and Tharek Abd. Rahman

Chapter 31 Modeling Of Wet Antenna Losses For Frequencies 15-38 GHz
Md. Rafiqul Islam, Jaleel Chebil and Tharek Abdul Rahman

Chapter 32 Path Length Reduction Factor For Rain Attenuation Prediction In Malaysia
Md. Rafiqul Islam, Jaleel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman

Chapter 33 Frequency Scaling Methods For Rain Attenuation Prediction
Md. Rafiqul Islam, Jaleel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman

Chapter 34 Proposed Frequency Scaling Method Based On Measured Rain Attenuation Data
Md. Rafiqul Islam, Jaleel Chebil and Tharek Abdul Rahman

Chapter 35 Analyses Of Rain Fade Characteristics For A 38 GHz Link In The Tropics
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 36 Worst-Month Statistics Modeling Based on Measured Data
Md. Rafiqul Islam, Jaleel Chebil and Tharek Abdul Rahman

Chapter 37 Worst-Month Rain Fade Statistics at 38 GHz
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 38 Rain Fade Slope Prediction Model Based On Satellite Data Measured In Malaysia
Md. Rafiqul Islam, Khalid Al-Khateeb, Sheraaz Khan and Hassan Dao

Chapter 39 Effects Of Rain On Free Space Optical Propagation
Suriza A.Z., Md. Rafiqul Islam, Wajdi Al-Khateeb and A.W. Naji

Chapter 40 Investigation Of Solar Environment Effects On Space Assets & Satellite Signals
Othman O. Khalifa, Md. Rafiqul Islam, Jaleel Chebil, Saad Bashir and Sivamohan A/L V. Shumugam
Chapter 29

Development of A Modified Rain Attenuation Prediction Model

Ahmad Fadzil Ismail1 and Khairayu Badron1

29.1 Introduction

The development of a modified rain-induced attenuation model for tropical V-band satellite-Earth link was inspired from the notable inconsistencies of the existing models including the ITU-R P618-9 \cite{1}. Prominent researchers namely Ippolito \cite{2} and Ajayi \cite{3} do believe that most available models may not be directly applicable for predicting rain attenuation in tropical region. Specific consideration and attention at V-band frequency are now eminent since there are escalating usages of the lower bands. The key concern now is that the commonly adopted ITU-R model may also not be appropriate, as can be observed in \cite{1}. After all, the ITU-R model is based on among the earliest developments of specific attenuation $\gamma=aR^b$ by Olsen and Rogers somewhat way back in 1976 \cite{4}. The issues are:

a) Most experiments in deriving the model were carried out in temperate climate. Temperate climate characteristics are completely different from tropical climate that requires profound attention on the issues of rain fade.

b) Olsen and Rogers \cite{4} clearly stated that the possibilities of more than 10\% error will occur if the frequency used and rain rate experienced are outside the specified limits of:
 i. $f > 34$ GHz and $R = 5$ mm/hr
 ii. $f < 11$ GHz and $R = 25$ mm/hr
 iii. $f < 3$ GHz and $R = 100$ mm/hr

c) The development of high frequency asymptotic expansion for attenuation, A is indeed more difficult and complex due to the volatile varying rain drops size distribution especially the case of tropical rain.

d) The calculations for water spheres involved only 41 frequencies but then manipulated for the whole range from 1 to 1000GHz.

e) The values for the rain rates stated by the Laws and Parson \cite{5} for the higher rain rates: 101.6 and 152.4 mm/h were obtained by mere extrapolation and must therefore be viewed with extreme caution since the actual sizes and velocities of the rain drops may vary radically.

1 Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM)