Contributions of Early Muslim Scientists to Engineering Studies and Related Sciences

Abdi O. Shuriye
Waleed F. Faris

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Contributions of Early Muslim Scientists to Engineering Sciences and Related Studies

Editors
Abdi O. Shuriye
Waleed F. Faris

IIUM Press
Contents

Title
Preface v
Acknowledgment vi
Lists of Contributors vii
Introduction 1
Chapter 1 Al-Battani’s Contribution to Astronomy 3
Chapter 2 Safiha by Al-Zarqali 8
Chapter 3 Ibn Al Shatir’s Influence on Modern Astronomy 12
Chapter 4 I-Zarqali on Instrumentation 19
Chapter 5 Contributions of Al-Razi on Alchemy in Terms of Metal and Substance 24
Chapter 6 Jabir Ibn Hayyan’s Work on Sulphur-Mercury Theory 30
Chapter 7 The Contribution of Hassan Al-Rammah to Gunpowder and Rocket Technology 36
Chapter 8 The Contribution of Ibn Al-Awwam in Botany and Agriculture 41
Chapter 9 Al-Battani Contributions in Astronomy and Mathematics 45
Chapter 10 Al-Biruni’s Views on the Discovery of the Spherical Earth 49
Chapter 11 Al-Kashi and Access to the Arithmetic & Astronomy 53
Chapter 12 Nasir Al-Din Al-Tusi’s Understanding of Trigonometry 58
Chapter 13 Al-Biruni’s Experimental Scientific Methods in Mechanics 65
Chapter 14 Al-Haytham’s Understanding of Physical Nature of Light 70
Chapter 15 Contributions of Ibn Al-Haytham on Optics 74
Chapter 16 Energy Particle-Physics: The Efforts of Abdel Nasser Tawfik 80
Chapter 17 Mahmoud Hessaby’s Contribution to the Infinitely Extended Particles Theory in Quantum Physics 86
Chapter 18 The Contribution of Ibn Ishaq Al-Kindi to Light, Optics and Cryptology 91
Chapter 19 The Contribution of Ibn Sahl in Refraction of Light 95
Chapter 20 Al Kindi on Pharmacology 103
Chapter 21 Contributions of Kerim Kerimov in Aerospace Engineering 110
Chapter 22 Fazlur Rahman Khan’s Understanding of Tube Structural System of Skyscrapers 115
CHAPTER FOUR

AL-ZARQALI ON INSTRUMENTATION

Imama Karim Manba Ushama, Nassereldeen A. Kabashi


4.1 INTRODUCTION

The objective of this chapter is to describe the innovation of Al-Zarqali. There were various astronomers during the Golden Age who flourished in the Muslim World, among them Abu Ishaq Ibrahim ibn Yahya Al-Zarqali. He is considered to be an instrument maker, mathematician and a foremost astronomer of his time.

4.2 HISTORY

Achievements of Al-Zarqali were many but his focus of research was on astronomy. It is a well-known fact that importance of a subject is given only when one seeks that field acutely. Al-Zarqali’s gave importance to astronomy and thus he created instruments to achieve easy readings. Al-Zarqali carried out observations one after another at Toledo[Al-Tulaytalah] and made a compilation. This compilation is the well-known Toledan Tables. These are astronomical tables which were used to predict the positions of the Sun, Moon and the other planets relative to the fixed stars. He made corrections to some of the geographical data from Ptolemy and Al-Khwarizmi. Both are well known for their immense contributions to the field of astronomy and mathematics. To be specific, Al-Zarqali made some corrections to the work of Ptolemy’s estimate of the length of the Mediterranean Sea. The Toledo Tables were translated into Latin in the Twelfth century.

Al-Zarqali was the first person to prove conclusively the motion of the Aphelion relative to the stars. The Aphelion is the point on a planet orbit that is farthest from the Sun. Combining theoretical knowledge with technical skill, he excelled at the construction of precision instruments for astronomical use. He constructed a flat astrolabe which is a universal instrument and can be used in any place and at any latitude. Its details were published in many languages which included Latin, Hebrew and several European languages. He also constructed a water clock which is able to find the hours of the day and the night of the lunar months [ElSaadawy, n.d.]

Al-Zarqali wrote a treatise on the construction of an instrument known as the equatorium. In this chapter, one of the focuses will be on this instrument. This instrument is used for the computing the positions of the celestial bodies. This work was translated into Spanish in the thirteen century by order of King Alfonso X. This could be found in a section of Libros del Saber de Astronomia. Copernicus (1473-1543) who was Renaissance astronomer expresses his indebtedness to Al-Zarqali (Arzachel) and quotes his work several times. In the work Der Mond (1837), Beer and Madler mention a surface of the moon named as Arzachel after Al-Zarqali. It is more than sixty miles in diameter and it is