Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
Table of Contents

Preface iv

Table of Contents v

Chapter 1
Experimental analysis and comparison of performance characteristics of catalytic converters 1
A.K.M. Mohiuddin

Chapter 2
Experimental analysis and simulation of catalytic converters 8
A.K.M. Mohiuddin

Chapter 3
Thermal design of mechanical devices using expert system 14
A.K.M. Mohiuddin

Chapter 4
Exhaust system optimization using GT- Power 21
A.K.M. Mohiuddin

Chapter 5
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements 29
A.K.M. Mohiuddin

Chapter 6
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results 36
A.K.M. Mohiuddin

Chapter 7
2nd Generation IIUM Buggy Car – Part I: Design 42
A.K.M. Mohiuddin

Chapter 8
2nd Generation IIUM Buggy Car – Part II: Fabrication 48
A.K.M. Mohiuddin

Chapter 9
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) 53
A.K.M. Mohiuddin and Yap Haw Shin

Chapter 10
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle 60
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat
Chapter 11

Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin

Chapter 12

Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz

Chapter 13

Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan

Chapter 14

3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NOx emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood

Chapter 15

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 16

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 18

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 19

Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman

Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir

Chapter 22

Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir

vi
Chapter 23

Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24

Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25

Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 27

Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28

Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29

Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30

Film Cooling of Turbine Blades
Asif Hoda
Numerical simulation: DNS and LES

Chapter 28

Direct numerical simulation (DNS) and large eddy simulation (LES)

Asif Hoda

Department of Mechanical Engineering, International Islamic University Malaysia

Introduction

The most reliable and accurate prediction of turbulent shear flows can be obtained by solving the full Navier Stokes and energy equations, equations (1)-(3) with the appropriate boundary conditions.

Continuity:

\[\frac{\partial \tilde{u}_i}{\partial x_i} = 0 \]

Momentum:

\[\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_i \partial x_j} \]

Energy:

\[\frac{\partial \tilde{\theta}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{\theta}}{\partial x_j} = \alpha \frac{\partial^2 \tilde{\theta}}{\partial x_i \partial x_j} \]

Equations (1) through (3) are universally believed to give the exact description of turbulence in fluids and can be solved numerically to obtain solutions for a wide range of flow problems. This solution methodology is called direct numerical simulation (DNS).

Direct Numerical Simulation

DNS involves the discretization of the governing equations on a finite difference mesh with appropriate numerical schemes for coupling the continuity and momentum equations. Although the numerical problem is not so severe, the appropriate resolution of the smallest length scales is an essential requirement and places a severe constraint on the finite difference domain to be used for the purpose. The mesh should not only span the entire