Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
Table of Contents

Preface iv

Table of Contents v

Chapter 1
Experimental analysis and comparison of performance characteristics of catalytic converters 1
A.K.M. Mohiuddin

Chapter 2
Experimental analysis and simulation of catalytic converters 8
A.K.M. Mohiuddin

Chapter 3
Thermal design of mechanical devices using expert system 14
A.K.M. Mohiuddin

Chapter 4
Exhaust system optimization using GT- Power 21
A.K.M. Mohiuddin

Chapter 5
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements 29
A.K.M. Mohiuddin

Chapter 6
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results 36
A.K.M. Mohiuddin

Chapter 7
2nd Generation IIUM Buggy Car – Part I: Design 42
A.K.M. Mohiuddin

Chapter 8
2nd Generation IIUM Buggy Car – Part II: Fabrication 48
A.K.M. Mohiuddin

Chapter 9
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) 53
A.K.M. Mohiuddin and Yap Haw Shin

Chapter 10
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle 60
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat
Chapter 11
Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin

Chapter 12
Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz

Chapter 13
Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan

Chapter 14
3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NOx emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood

Chapter 15
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 16
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 18
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 19
Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin

Chapter 20
Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman

Chapter 21
Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir

Chapter 22
Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir
Chapter 23
Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24
Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25
Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 26
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 27
Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28
Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29
Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30
Film Cooling of Turbine Blades
Asif Hoda
Introduction

Turbulence is a highly unstable, stochastic process which cannot be analyzed by deterministic tools and instead, one relies on statistical methods. The statistical tools used for RANS simulation are rather simple and involve the decomposition of the instantaneous velocity and temperature field into mean and fluctuating quantities, known as Reynolds decomposition:

\[\tilde{u} = U + u \]
\[\tilde{p} = P + p \]
\[\tilde{\theta} = \Theta + \theta \]

The Reynolds averaged continuity, Navier Stokes, and energy equations are obtained by substituting (1), (2) and (3) in to continuity, momentum and energy equations and time averaging the equations. The resultant form of the averaged equations is given as:

Continuity:

\[\frac{\partial U_i}{\partial x_i} = 0 \]

Momentum:

\[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = \frac{1}{\rho} \frac{\partial P}{\partial x_j} + \nu \frac{\partial^2 U_i}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (u_i \overline{u_j}) \]

Energy:

\[\frac{\partial \Theta}{\partial t} + U_j \frac{\partial \Theta}{\partial x_j} = \alpha \frac{\partial^2 \Theta}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (\overline{u_i \theta_i}) \]