Natural Product Communications

EDITOR-IN-CHIEF
DR. Pawan K. Agrawal
Natural Product Inc.,
7963, Anderson Park Lane,
Westerville, Ohio 43081, USA
agrawal@naturalproduct.us

EDITORS
PROFESSOR ALEJANDRO F. BARRERO
Department of Organic Chemistry,
University of Granada,
Campus de Fuente Nueva, s/n, 18071, Granada, Spain
afbarre@ugr.es

PROFESSOR ALESSANDRA BRACA
Dipartimento di Chimica Bioorganica e Biofarmacia,
Università di Pisa,
via Bonanno 33, 56126 Pisa, Italy
braca@farm.unipi.it

PROFESSOR DEAN GUO
State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences,
Peking University,
Beijing 100083, China
gdu5958@163.com

PROFESSOR YOSHIHIRO MIMAKI
School of Pharmacy,
Tokyo University of Pharmacy and Life Sciences,
Hortinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan
mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE
Department of Chemistry,
University of Wollongong,
Wollongong, New South Wales, 2522, Australia
spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE
Department of Chemistry,
Texas Christian University,
Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry,
The University of Alabama in Huntsville
Huntsville, AL 35809, USA
wsetzer@chemistry.uaah.edu

PROFESSOR YASUHIRO TEZUKA
Institute of Natural Medicine,
Institute of Natural Medicine, University of Toyama,
2630-Sugitani, Toyama 930-0194, Japan
tezuka@inn.u-toyama.ac.jp

PROFESSOR DAVID E. THURSTON
Department of Pharmaceutical and Biological Chemistry,
The School of Pharmacy,
University of London, 29-39 Brunswick Square,
London WC1N 1AX, UK
david.thurston@pharmacy.ac.uk

HONORARY EDITOR
PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences,
University of Portsmouth,
Portsmouth, PO1 2DT U.K.
acaf64@dsl.pipex.com

ADVISORY BOARD
Prof. Berhanu M. Abegaz
Gaborone, Botswana
Prof. Vâqar Uddin Ahmad
Karachi, Pakistan
Prof. Øyvind M. Andersen
Bergen, Norway
Prof. Giovanni Appendino
Novara, Italy
Prof. Yoshinori Asakawa
Tokushima, Japan
Prof. Lee Banting
Portsmouth, U.K.
Prof. Julie Banerji
Kolkata, India
Prof. Anna R. Bilia
Florence, Italy
Prof. Maurizio Bruno
Palermo, Italy
Prof. César A. N. Catalán
Tucuman, Argentina
Prof. Josep Coll
Barcelona, Spain
Prof. Geoffrey Cordell
Chicago, IL, USA
Prof. Ana Cristina Figueiredo
Lisbon, Portugal
Prof. Cristiana Gracia-Viguera
Murcia, Spain
Prof. Duvvuru Gunasekar
Tirupati, India
Prof. Kurt Hostettmann
Lausanne, Switzerland
Prof. Martin A. Iglesias Arteaga
Mexico, D.F., Mexico
Prof. Jerzy Jaroszewski
Copenhagen, Denmark
Prof. Leopold Jirovetz
Vienna, Austria
Prof. Karsten Krohn
Paderborn, Germany
Prof. Hartmut Laatsch
Gottingen, Germany
Prof. Marie Lacaille-Dubois
Dijon, France
Prof. Shou-Sheng Lee
Taipei, Taiwan
Prof. Francisco Macias
Cadiz, Spain
Prof. Imre Mathe
Szeged, Hungary
Prof. Joseph Michael
Johannesburg, South Africa
Prof. Ermino Murano
Trieste, Italy
Prof. M. Soledade C. Pedras
Saskatoon, Canada
Prof. Luc Pieters
Antwerp, Belgium
Prof. Peter Proksch
Düsseldorf, Germany
Prof. Phila Raharivelomanana
Tahiti, French Polynesia
Prof. Luca Rastrelli
Fisciano, Italy
Prof. Monique Simmonds
Richmond, UK
Prof. John L. Sorensen
Manitoba, Canada
Prof. Valentin Stonik
Vladivostok, Russia
Prof. Winston F. Tinto
Barbados, West Indies
Prof. Sylvia Urban
Bergen, Norway
Prof. Karsten Krohn
Paderborn, Germany
Prof. Hartmut Laatsch
Gottingen, Germany
Prof. Marie Lacaille-Dubois
Dijon, France
Prof. Shou-Sheng Lee
Taipei, Taiwan
Prof. Francisco Macias
Cadiz, Spain
Prof. Imre Mathe
Szeged, Hungary
Prof. Joseph Michael
Johannesburg, South Africa
Prof. Ermino Murano
Trieste, Italy
Prof. M. Soledade C. Pedras
Saskatoon, Canada
Prof. Luc Pieters
Antwerp, Belgium
Prof. Peter Proksch
Düsseldorf, Germany
Prof. Phila Raharivelomanana
Tahiti, French Polynesia
Prof. Luca Rastrelli
Fisciano, Italy
Prof. Monique Simmonds
Richmond, UK
Prof. John L. Sorensen
Manitoba, Canada
Prof. Valentin Stonik
Vladivostok, Russia
Prof. Winston F. Tinto
Barbados, West Indies
Prof. Sylvia Urban
Bergen, Norway

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2012 subscription price: US$1,995 (Print, ISSN# 1934-578X); US$1,995 (Web edition, ISSN# 1555-9475); US$2,495 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Quantitative and Physical Evaluation of Patchouli Essential Oils Obtained from Different Sources of *Pogostemon cablin*

Norma Hussina, Luigi Mondellob, Rosaria Costac, Paola Dugob, Nik Idris Nik Yusoffd, Mohd Ambar Yarmoc, Ahmad Ab. Wahabf and Mamot Saidg

aTwining University Programme (between 4University Kebangsaan of Malaysia and 5University of Messina, Italy)
bDipartimento Farmaco-Chimico, University of Messina, Viale Anunziata, 98168 Messina, Italy
cSchool of Food Science and Technology, University of Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
eMalaysian Agricultural Research and Development Institute, 43400 Serdang Selangor, Malaysia
fUniversità Campus Bio-medico, Via Álvaro del Portillo 21, 00128 Roma, Italy

normahus@mardi.gov.my

Received: March 28th, 2012; Accepted: May 23rd, 2012

Patchouli essential oil can be obtained from fresh, dried and fermented plant material. It is a highly valuable product in the fragrance industry and its quality changes depending upon raw material age and oil storage. In this work, patchouli essential oils derived from different treatments have been subjected to GC-FID quantitative analysis using an internal standard (ISTD) method with response factors (RF). Samples were obtained from i) fresh plants; ii) hydrodistillation of one year mature and fermented plants; iii) hydrodistillation of one year mature plants; iv) commercial products from Indonesia and Malaysia. Linear Retention Indices (LRI) for both polar and non-polar GC-MS analyses were also measured as a tool for qualitative analysis towards a homologous series of C15-C30 n-alkanes. The results obtained confirmed that, in all samples, patchouli alcohol was the main volatile constituent, with higher amount in lab-scale produced oils, compared with commercial samples. Other major compounds, in lab oils and commercial samples respectively, were: δ-guaiene, α-guaiene, pogostol, seychellene and α-patchoulenol. Another 36 compounds were also found.

Keywords: Quantitative analysis, Linear retention index (LRI), GC-FID response factor, GC-MS, Patchouli, *Pogostemon cablin*.

Quantification of constituents in essential oil research is a very important tool in order to define a correct chemical amount in the samples. The general procedure adopted when analysing an essential oil by GC techniques is to report the raw area percentage (FID % or MS %). Another common practice is to apply a "semi-quantitation", which means that peak areas are divided by an internal standard peak area. Basically, both procedures assume that the detector response is equal to unity. This assumption is approximately correct when target analytes are hydrocarbons, due to a linear response of the FID detector to the carbon number. On the other hand, when different moieties are present in the molecules to be quantified, such as keto-groups or carboxylic functions, FID response undergoes a shift that needs to be "corrected" through the measurement of response factors, for single compounds [1a-1c]. Quantitative GC analytical methods based on response factors (RF) and internal standard (ISTD) are still lacking for patchouli essential oil as compared with several reports present in the literature based on the sole GC-MS qualitative fingerprinting. Patchouli essential oil (PEO) is dominated by a large amount of oxygenated sesquiterpenes (such as pogostol and patchoulol). The presence of a hydroxyl group in the structure of patchouli alcohol (PA) affects the FID response, for the reasons briefly explained here. The exact mechanism of flame ionization is still not completely understood. It seems likely that upon burning all carbon atoms are converted into methane [2]. Therefore, hydrocarbons respond always in the same manner. When heteroatoms, like oxygen, are present in the organic solute, it becomes necessary to calibrate this fluctuation by using response factors, as previously reported by Costa et al. for other plants [1c].

Recently, some analytical procedures have been applied to *Pogostemon* sp. analysis by means of GC-MS coupled with integrated chemometric methods [3]; application of PA external standard calibration [4]; a comparison between supercritical fluid extraction and steam distillation [5]; a fast analysis with a short capillary column [6]; a simple wavelength detection of patchoulol by means of UV-spectrophotometer [7]; a GC-MS analysis with different ionization techniques [8]; HPLC with UV detection at 220nm for mono and sesquiterpenes [9], and a 2D fingerprinting analysis [10]. *P. cablin* essential oil was recently reported to contain 65.8% of sesquiterpene hydrocarbons, followed by oxygenated sesquiterpenes (27.0%), dominated by patchouli alcohol, α-bulnesene (also known as δ-guaiene), α-guaiene, γ-patchoulenol and β-patchoulenol [11a]. Other *Pogostemon* species have been recently investigated i.e. *P. heyneanus*, whose predominant constituent was acetophenone (51.0%) followed by patchouli alcohol (14.0%) [11b]; and *P. benghalensis*, which showed a completely different composition compared with *P. cablin* (β-caryophyllene, 12.5-15.2%; β-bisabolene, 8-18%; elemol, 4-20%) [11c]. The woody balsamic notes and the strong fixative properties of patchouli oil made it a basic ingredient for certain high value perfumes, due to the presence of patchouli alcohol (PA) and norpatchoulenol (NP) [12a, 12b]. These two compounds have been considered in a study on contact dermatitis as potential allergens [13]. In addition, PEO is not only a fixative material in perfumery, but also an insecticide, flavouring agent and clothing odorant. The traditional uses of *P. cablin* are based on some analgesic, anti-inflammatory and
Table 1: Sample description and physical evaluation of patchouli oil samples analyzed.

<table>
<thead>
<tr>
<th>No. of Samples</th>
<th>I.D.</th>
<th>Source</th>
<th>Moisture content (%)</th>
<th>Recovery %</th>
<th>Color</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 A</td>
<td>Fresh plants</td>
<td>73-75</td>
<td>0.38</td>
<td>Weakly light green and very clear</td>
<td>α-Hexane</td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>Hydrodistillation of 1 year mature and dried plants</td>
<td>10-12</td>
<td>0.64</td>
<td>Light yellowish, clear</td>
<td>α-Hexane</td>
<td></td>
</tr>
<tr>
<td>2 C (Control)</td>
<td>Hydrodistillation of 1 year mature and dried plants</td>
<td>10-12</td>
<td>1.12</td>
<td>Light yellowish, clear</td>
<td>α-Hexane</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>Commercial PEO*, Indonesia</td>
<td>unknown</td>
<td>No data received from supplier</td>
<td>Brownish and slightly cloudy</td>
<td>Dichloromethane. Not soluble in n-hexane, turning cloudy</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>Commercial PEO*, Malacca, Peninsular Malaysia</td>
<td>unknown</td>
<td>No data received from supplier</td>
<td>Golden yellowish and clear</td>
<td>Dichloromethane. Not soluble in n-hexane, turning cloudy</td>
<td></td>
</tr>
</tbody>
</table>

¹Fresh P. cablin leaves and stems (maturity during harvesting was 5 months);
²Unknown distillation type; ³oil ageing time: 4 years; ⁴Steam distillation; ⁵oil ageing time: 3 years

antibacterial effects [4,14]. As reported by Sundaresan et al. [15] and Xu et al. [3] PA content ranges from 14.6% to 23.3%. However, in some cases it was determined as 60.3% [16a]; 43.60-66.25% [16b]; and 44.35-56.30% [16c]. A standardized grade PEO, besides satisfying specific olfactory needs, must have a PA content between 26-40%, as required by Essential Oil Associations, to enter the global markets. Table 1 reports the list and description of samples analyzed, along with some physico-chemical data. Samples A, B and C were oils produced in the laboratory, whereas D and E were two commercial PEOs produced in Indonesia and Malaysia, respectively.

From morphological observation, sample D was thicker and more brownish than sample E; D oil was older than E oil. Both oils were not fully soluble in n-hexane and provided cloudy solution. The solubility of compounds in a non-polar solvent was probably reduced by terpene oxidation, which makes the oil more soluble in a polar solvent (dichloromethane). PEOs from the laboratory (A, B and C) were younger and showed a high solubility in non-polar organic solvents (n-hexane). PEO obtained from fresh leaves and stems (A) yielded a very low amount of oil (0.38%). This was due to the higher water content in fresh plant material (73-75%), as can be seen in table 1. However, this result was similar to that reported by Swamy et al., although the PA content was much lower (30.31%) [17]. Essential oil yields for B and C samples were 0.64% and 1.12%, respectively. B oil recovery was lower, probably due to volatiles loss during one week of wet fermentation and soaking conditions, after a pre-heating process. Sample C, being one year dried, had a more concentrated essential oil (1.12%). According to Hussin et al. [18], PEO recovery from premature and 4 months dried P. cablin plants was 0.96%, an amount that increased after 1 year of plant growth. In a research study by Kongkathip et al. on 3-9 months dried P. cablin, a reduction of the PEO yield from 3.01 to 1.78% was observed [4]. It is a matter of fact, though, that the oil content and its composition are greatly affected by variables such as site of harvest, material and condition of distillation. Evaluation of the PEOs’ color was also carried out (Table 1). The main finding was a darker color for commercial samples compared with lab scale produced oils. In total, 44 components have been determined in the GC fingerprint of the PEOs analyzed. Table 2 reports the quantitative data expressed as g/100g, obtained through the application of the internal standard method with FID response factors. The latter have been measured for chemical groups, following the analytical procedure previously published [1c]: selected standard compounds, representative of a chemical class (e.g. limonene for monoterpene hydrocarbons), have been injected at 5 different concentrations with an internal standard (α-nonane). When available, more than one compound for each chemical class was injected. Each PEO sample has been run in triplicate and repeatability tested by measuring the %RSD, which was <5% on average, except for some small peaks, such as linalool, where it was raised up to 12%. Linear Retention Indices (LRIs) have also been measured on both polar and nonpolar columns and reported in Table 2. With regard to the LRIs from the polar stationary phase, it must be highlighted that they are characterized by a lower level of repeatability and by a lack of literature data. Lab produced PEO samples and the other two commercial samples showed the same pattern for six major chemical compounds, namely patchouli alcohol, δ-guaiene, α-guaiene, sicychene, pogostol and α-patchoulen. PA content ranges were 51.9-68.0% and 46.3-45.9%, in lab PEOs and commercial samples, respectively. These results demonstrated that Pogostemon cablin produces higher amounts of patchouli compared with previous research that reported 26-40% and 30-40% [19a,19b]. This range far exceeded the one prescribed by the Essential Oil Associations for authentic oil, that is 26-40%, also reported by Burfield [20,21]. Minor compounds (Table 2), such as norpatchoulenol, although present in lower amount, are considered very important to the olfactory character of PEO, as mentioned by Sunderkotter et al. in a study on (+)-patchoulonol and (+)-norpatchoulenol [22]. These two compounds are estimated as the most important woody markers in mature P. cablin material and essential oils and suggest a further chiral investigation on the PEOs here investigated.

A samples presented trace amounts (≥0.01%) of other compounds, such as benzoaldehye, 1-octen-3-ol, 3-octanone, 2-ethyl hexanol, linalool, methyl salicylate and eugenol. Limonene and δ-elemene were found in slightly higher amounts than in the other PEOs. Phytol, a diterpenoid compound, was also observed in the A oil, although in small amount (0.02%) compared with other samples. A contained a higher amount of cis-3-hexen-1-ol, already mentioned by Oyen and Dung, which is a leaf alcohol with green and fresh notes that gives floral notes in trace amount [23]. Commercial PEOs, B and C samples had very low amounts of these compounds.

Two interesting unknown compounds (I and II) were found at consistent level: 3.4-9.8% and 4.7%, <0.01% and 0.8-0.9% and 0.6-0.4%, respectively, for both the 6 lab samples and the 2 commercial PEOs. From a literature survey, it seems likely that the mass spectrum (MS) of unknown II corresponds to that reported by Lu et al. [14], while no data can be found about unknown I. Further investigation by isolation, purification steps and NMR, will be carried out in order to elucidate their structure.

From the overall observations, it came out that PEOs produced on the lab-scale were richer in patchouli compared with commercial samples. This finding could be explained by the raw material used, which was 12 months dried. No data are available for commercial samples which relate to the same material age. Also, it must be taken in consideration that hydrodistillation was conducted with a much lower amount of water and plant material (100 g vs 20 Kg on industrial scale). In this study, a new quantitative analytical method was developed for the chemical investigation of P. cablin essential oil. The results gathered from this research can be of support to patchouli traders and producers worldwide. Quantification of volatiles was accomplished by accurate calibration based on the internal standard method and FID response factors.
was kept in a refrigerator at 4°C for 2 days before distillation. A 100 plants were kept in polyethylene (PE) bags, and drying continued at commercial solar dryer until less than 10% moisture, then dried growing in acid soil type (containing bisulfite), where the condition time taken to complete the analysis ranged from 6 to 12 mins. A full description of the samples is described in Table 1.

Table 1: Chemical composition of the 8 patchouli essential oil (PEO) samples analyzed. Quantitative values are expressed as g/100g.

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>R.F.</th>
<th>LRI _p (Exp.P)</th>
<th>LRI _np (ExpNP)</th>
<th>A 1</th>
<th>A 2</th>
<th>B 1</th>
<th>B 2</th>
<th>C 1</th>
<th>C 2</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.3</td>
<td>-</td>
<td>1196</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>-</td>
<td>1113</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>1021</td>
<td>922</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>1019</td>
<td>949</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1018</td>
<td>972</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1107</td>
<td>978</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>0.17</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>1029</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>-</td>
<td>1113</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Experimental

Plant material and treatments: Patchouli leaves and stems were collected from Aromatic Plant Nursery, Essential Oil Incubator, MARDI, Kuala Linggi Station, Malacca, Malaysia. The material was dried and aged (fermented) for 12 months. The plant maturity of fresh material during harvesting was 5 months. The plants were growing in acid soil type (containing bisulfite), where the condition was suitable for *Pogostemon* sp. and other aromatic crops in Peninsular Malaysia. The plants collected were pre-dried with a commercial solar dryer until less than 10% moisture, then dried plants were kept in polyethylene (PE) bags, and drying continued at ambient temperature prior to essential oil processing. Each bag was able to hold up to 2.5 Kg dried materials. Fresh material collected was kept in a refrigerator at 4°C for 2 days before distillation. A 100 g portion was added to 1.2 L distilled water and subjected to distillation for up to 7 h using a Clevenger apparatus (2 L capacity). A full description of the samples is described in Table 1.

Moisture analysis: The moisture content of the fresh and dried samples (1 g) was determined using an automatic IR-Moisture balance at 105°C until the moisture was completely removed. The time taken to complete the analysis ranged from 6 to 12 mins.

POE recovery: One hundred g of wet or dried plant material was weighed, added to 1.2 L distilled water and transferred into a 2 L round bottom flask in a Clevenger system. A cooling system was set up prior to heating the flask. Every hour the POE was collected and pooled in a closed 10 mL bottle until distillation was completed. The entire process lasted 7. The moist POE was dried using Na2SO4, then carefully pipetted into a 1 mL GC vial and weighed.

Sample preparation for GC analysis: The POEs (0.10 g), were mixed with ISD (100 μL of a 100,000 ppm stock solution) and 0.8 mL n-hexane. For retention indices, a mixture of n-alkanes (\(C_{15}: C_{36} \) Supelco (PA, USA)) was used.

GC-FID analysis: GC-FID analyses were carried out by means of a GC-2010 system (Shimadzu, Japan) equipped with an SLB-SMS column (30 m × 0.25 mm i.d. × 0.25 μm dₐ), supplied by Supelco. Oven temperature program: from 50°C at 3°C/min to 300°C, then held for 5 mins. Injection temperature was 280°C; injection took place in split mode with a split ratio of 1:100. Carrier gas was helium, with a linear velocity of 30 cm/s, pressure was 99.8 KPa. Detector temperature was 300°C, detection gases were H2 (40 mL/min), N2 (40 mL/min) and air (400 mL/min).
References

[17] (a) SCCP. (2006) *Scientific Committee on consumer Products*. The SCCP’s Notes of guidance for the testing of cosmetic ingredients and their safety evaluations, 6th. Revision, Adopted by the SCCP during the 10th Plenary Meeting of 19th December 2006; (b) SCCHFP/0389/00 Final. The first update of the inventory of cosmetic products. Section II: Perfume and aromatic materials, 24th Oct, 2000.

Antihyperglycemic agents from *Ammannia multiflora*

Free Radical Scavenging Activities of Naturally Occurring and Synthetic Analogues of Sea Urchin Naphthazarin Pigments
Natalia K. Utikina and Natalia D. Pokhilo 901

Drynariae Rhizoma Increases Immune Response in Mice
Hyo-Jin An, Gil-Goo Lee and Kyung-Tae Lee 905

Antioxidant, Antimicrobial and Wound Healing Activities of *Boesenbergia rotunda*
Rungrat Jitvaropas, Suphakat Saenthaweesuk, Nuntiya Somporn, Amornnat Thuppia, Seewaboon Sireratawong and Waranyoo Phoolcharoen 909

Revisit to (Z)-Civetone Synthesis
Hisahiro Hagiwara, Teppei Adachi, Tomomi Nakamura, Takashi Hoshi and Toshio Suzuki 913

Fatty Acid Composition of *Juniperus* Species (Juniperus Section) Native to Turkey
Ayşegül Güvenç, Nurgün Küçükboya and Ahmet Ceyhan Gören 919

c-AMP Dependent Protein Kinase A Inhibitory Activity of Six Algal Extracts from South Eastern Australia and Their Fatty Acid Composition
Ana Zivanovic and Danielle Skropekta 923

Quantitative and Physical Evaluation of Patchouli Essential Oils Obtained from Different Sources of *Pogostemon cablin*
Norma Hussin, Luigi Mondello, Rosaria Costa, Paola Dugo, Nik Idris Nik Yusoff, Mohd Ambar Yarmo, Ahmad Ab.Wahab and Mamot Said 927

Essential Oil Composition of *Prasium majus* from Croatia
Igor Jerković, Marko Šute, Željan Maleš and Kroata Hazler Pilepić 931

Composition and Antipathogenic Activities of the Twig Essential Oil of *Chamaecyparis formosensis* from Taiwan
Chen-Lung Ho, Kuo-Feng Hua, Kuan-Ping Hsu, Eugene I-Chen Wang and Yu-Chang Su 937

In vitro Antimicrobial Properties and Chemical Composition of *Santolina chamaecyparissus* Essential Oil from Algeria
Samah Djeddi, Khadidja Djeble, Ghania Hadjbouroua, Zoubida Achour, Catherine Argyropoulou and Helen Skalitsa 941

Chemical Composition and *in vitro* Antimicrobial Activity of the Essential Oil of the Flowers of *Tridax procumbens*
Rajesh K. Joshi and Vijayalaxmi Badakar 943

Chemical Composition and Antimicrobial Activity of Essential Oil of *Heracleum rigens*
Nataraj Jaganathan, Hanumanthaiyah Ramakrishnaiyah, Venkatarangaiyah Krishna and Prameela Javarrya Gowda 947

Chemical Composition and *in vitro* Evaluation of Antimicrobial and Anti-acetylcholinesterase Properties of the Flower Oil of *Ferula lutea*
Mansour Znati, Aymen Jabrane, Hafedh Hajlaoui, Fethia Harzallah-Shkiri Jalloul Bouajila, Joseph Casanova and Hichem Ben Jannet 951

Determination of Antioxidant Properties of 26 Chilean Honeys and a Mathematical Association Study with their Volatile Profile
Elizabeth Sánchez, Marisa Piovano, Erika Valdés, Manuel E. Young, Cristian A. Acevedo and Mauricio Osorio 955

Review/Account

Acetylcholinesterase Inhibition within the Lycorine Series of Amaryllidaceae Alkaloids
Jerald J. Nair and Johannes van Staden 959

Alkaloids Produced by Endophytic Fungi: A Review
Yanyan Zhang, Ting Han, Qianliang Ming, Lingshang Wu, Khalid Rahman and Luping Qin 963
Chemical Constituents of *Blumea balsamifera* of Indonesia and Their Protein Tyrosine Phosphatase 1B Inhibitory Activity
Azis Saifudin, Ken Tanaka, Shigetoshi Kadota and Yasuhiro Tezuka 815

A New Sesquiterpene from an Endophytic *Aspergillus versicolor* Strain
Xiang-Hong Liu, Peng-Ping Miao, Xiao-Dong Li, Xiu-Li Yin and Nai-Yun Ji 819

Skin Permeation of Cacalol, Cacalone and 6-epi-Cacalone Sesquiterpenes from a Nanoemulsion
Maria Luisa Garduño-Ramírez, Beatriz Clares, Valeri Dominguez-Villegas, Concepcion Peraire, María Adolína Ruiz, María Luisa García and Ana C. Calpina 821

Compounds with Antiproliferative Activity on Five Human Cancer Cell Lines from South Korean *Carpesium triste*
Hyung-In Moon 825

Biogenetic-type Synthesis of 2-Hydroxy-4,4,7-trimethyl-1(4H)-naphthalenone, a Modified Apocarotenoid from *Ipomoea pes-caprae*
Kamalesh P. Pai Fondekar, Shashikumar K. Paknikar, Savia Torres and Shrivallabh P. Kamat 827

Ixoroid: A New Triterpenoid from the Flowers of *Ixora coccinea*
Muhammad Ali Versiani, Ambreen Ikram, Salman Khalid, Shaheen Faizi and Ifikhar Ahmed Tahiri 831

Distinguishing Between R- and S-Antcin C and Their Cytotoxicity
Ting-Yu Lin, Shih-Chang Chien, Yueh-Hsiung Kuo and Sheng-Yang Wang 835

Chemical Investigation of Saponins from Twelve Annual *Medicago* Species and their Bioassay with the Brine Shrimp *Artemia salina*
Aldo Tava and Luciano Pecetti 837

Inhibition of cPLA2 and sPLA2 Activities in Primary Cultures of Rat Cortical Neurons by *Centella asiatica* Water Extract
Patricia P. Defilippo, André H. Raposo, Alessandra G. F. Deodoce, Aline S. Ferreira, Hudson C. Polonini, Wagner F. Gattaz and Nádia R. B. Raposo 841

Triterpene Glycosides from the Sea Cucumber *Eupentacta fraudatrix*. Structure and Cytotoxic Action of Cucumariosides A5, A6, A7, A10, A11, A13 and A14, Seven New Minor Non-Sulfated Tetraosides and an Aglycone with an Uncommon 18-Hydroxy Group
Alexandra S. Silchenko, Anatoly I. Kalinovsky, Sergey A. Avilov, Pelageya V. Andryjaschenko, Pavel S. Dmitrenok, Ekaterina A. Martyyas and Vladimir I. Kalinin 845

Two New Asterosaponins from the Far Eastern Starfish *Lethasterias fusca*
Natalia V. Ivancho, Anatoly I. Kalinovsky, Alla A. Kicha, Timofey V. Malyarenko, Pavel S. Dmitrenok, Svjetlana P. Ermakova and Valentin A. Stonik 853

Corylucinine, a new Alkaloid from *Corydalis cava* (Fumariaceae), and its Cholinesterase Activity
Zdeněk Novák, Jakub Chlebek, Lukomir Opletal, Pavel Jiroš, Kateřina Macáková, Jiří Kuneš and Lucie Cahlíková 859

Improved Method for Isolation of Lycopsamine from Roots of Comfrey (*Symphytum officinale*)
Damjan Janeš, Boštjan Kalamar and Samo Kreft 861

Trigonelline and other Betaines in Species of Laminariales
Gerald Blunden, Michael D. Guiry, Louis D. Druehl, Kazuhiro Kogame and Hiroshi Kawai 863

Anticomplement and Antimicrobial Activities of Flavonoids from *Entada phaseoloides*
Ke Li, Shihua Xing, Mengyue Wang, Ying Peng, Yuqiong Dong and Xiaobo Li 867

Antioxidant Compounds from Algerian *Convolvulus tricolor* (Convolvulaceae) Seed Husks
Nassira Kacem, Anne-Emmanuelle Hay, Andrew Marston, Amar Zellague, Salah Rouaithi and Kurt Hostettmann 873

Quality Control and Analytical Test Method for *Taxus baccata* Tincture Preparation
Pamela Vignolini, Beatrice Gehrmann, Matthias Friedrich Melzig, Leonardo Borsacchi, Arianna Scardigli and Annalisa Romani 875

Chalcones in Bioactive Argentine Propolis Collected in Arid Environments
Eliana Solórzano, Nancy Vera, Soledad Cuello, Rosana Ordoñez, Catiana Zampini, Luis Maldonado, Enrique Bedascarrasbure and María I. Isla 879

Inhibitory Effect of Hexahydrocurcumin on Human Platelet Aggregation
Huei-Ping Dong, Rei-Cheng Yang, I-Chun Chunag, Li-Ju Huang, Hsing-Tan Li, Hisin-Liang Chen and Chung-Yi Chen 883

Biotransformation of Salvianolic acid B by *Fusarium oxysporum* f. sp. *Cucumerinum* and Its Two Degradation Routes
Shidong Kan, Huimin Lin, Ji’an Li, Lei Shao and Daijie Chen 885

Phytopathogenic Fungal Inhibitors from Celeris Seeds
Tao Liu, Fu-Guang Liu, Hui-Qin Xie and Qing Mu 889

Synthesis and Antimicrobial Activities of Some Sulphur Containing Chromene Derivatives
Tuba Şerbetçi, Seher Birteksöz, Soizic Prado, Sylvie Michel and François Tillequin 891

Effect of Polyamines on Shoot Multiplication and Furanocoumarin Production in *Ruta graveolens* Cultures
Renuka Diwan and Nutan Malpathak 895

Continued inside backcover