Advances
in
Aircraft Structures

Editor
Jaffar Syed Mohamed Ali
Erwin Sulaema

IIUM Press
CONTENTS

Preface

Contents

Contributing Author

Aircraft Structural Design and Testing

1. Design of IIUM Aircraft Fuselage Using Composite Material
 \(516/20210\)
 1

2. Fabrication and Testing of IIUM Aircraft Fuselage Structure Made of
 Composite Laminate Material
 \(516/20223\)
 8

3. Design and Fabrication of Fuselage Model for Laboratory Purpose
 \(516/20225\)
 16

4. Simulation of Fuselage Model for Laboratory Purpose
 \(516/20228\)
 24

5. Propeller Blade Stress Analysis using CATIA
 \(4625/20230\)
 30

6. Lateral Crushing of Composite Fuselages
 \(4625/20232\)
 37

7. Corrosion Detection in Aircraft Structures by Ultrasonic Method
 \(4980/20233\)
 45

8. Fatigue Damage Characterization of Aluminum Alloy Plates
 \(4980/20235\)
 55

Composite Structures

9. Determination of Mechanical Properties of Corrugated Hybrid Composite
 \(516/20239\)
 63

10. Composite Failure Mechanism of Corrugated Hybrid Composite Subjected
 to Bending Loading
 \(516/20239\)
 70

11. Study of Energy Absorption of Foam-Filled Honeycomb Structure
 \(516/20241\)
 79

12. Experimental Study of Indentation on Composite Structure
 \(516/20245\)
 86

13. Simulation Study of Composite Structure Subjected to 3 Points Bending Load
 \(516/20246\)
 93

14. Experimental Study of the Strength of Sandwich Structure with Honeycomb Core
 \(516/20248\)
 101

15. Buckling of Composite Columns
 \(4625/20249\)
 107

16. Buckling of Composite Perforated Plates
 \(4625/20253\)
 117

17. Structural Analysis of an Active Beam
 \(4625/20254\)
 125

18. Characterization of Composite Materials using Full Field Data
 \(6377/20256\)
 131
Application of Virtual Fields Method to Composite Plate Bending Problem (4371/20262) 137
Mode I Delamination Simulation using LS-DYNA (3563/20263) 143

Structural Instability
21 Buckling of Long Column (4625/20264) 150
22 Buckling of Thin Walled Sections (4625/20265) 158
23 Effect of Boundary Conditions on the Buckling Behavior of Perforated Plates (4625/20266) 167
24 Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates. (4625/20267) 174
25 Experimental Determination of Critical Buckling Load for a Perforated Plate (4625/20268) 182
26 Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element (4628/20269) 190

Structure Analytical Methods
27 The Constitutive Equation Gap Method (6371/20270) 198
28 The Equilibrium Gap Method (6371/20271) 202
29 The Reciprocity Gap Method (6371/20272) 206
30 The Virtual Fields Method (6371/20273) 210
31 Numerical Construction of Piecewise Virtual Fields (6371/20274) 215
32 Numerical Model of Noise Effect in Full Field Data (6371/20274) 221
33 Optimized Virtual Fields with Noise Minimization (6371/20276) 227
34 Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements (4427/20279) 233
35 Finite Element Model Updating (6371/20277) 240
Chapter 22
Buckling of Thin Walled Sections

Jaffar Syed Mohamed Ali, Nur Faizlin Jamaludin, Rosfarisya Bt Roslan and
Mohammad Abdul Rahman

Abstract

The objective of this chapter is to study the buckling behavior of thin walled sections that is made of aluminum. The failure load and the failure mode of the specimens will be examined. The specimens were made of different thin walled sections with different thickness and length.

Keywords: Buckling, thin walled, experimental, crippling, critical load.

1. Introduction

A large portion of aircraft’s structure consists of thin webs stiffened by slender longerons or stringers. Both of them are subjected to compression loading which may lead to buckling. Since buckling will occur before fail, therefore, for this type of structure, buckling is the most critical mode of failure so the prediction of buckling loads of the thin wall structure is very important in aircraft design. The specimens were tested against the compressive load and that the buckling phenomenon was studied.

Advances In Aircraft Structures